簡易檢索 / 詳目顯示

研究生: 莊牧寰
Chuang, Mu-Huan
論文名稱: 鎂合金於離子液體中電鍍鋁及後續熱處理對其性質之影響研究
Effects of ionic liquid Al coating and its subsequent heat treatment on the characteristics of Mg alloy
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 108
中文關鍵詞: 鎂合金離子液體電鍍熱處理
外文關鍵詞: Mg alloy, ionic liquid, electrodeposition, heat treatment
相關次數: 點閱:81下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討利用AlCl3-EMIC 離子液體,在室溫充滿氮氣的手套箱鈍態環境中,以定電位及定電流的方式於鎂合金AZ91D 表面覆鍍一鋁鍍層,由不同濃度之離子液體的採用,探討鍍液與基材間的反應,以及對於電鍍層表面形貌、化學成分、結晶結構的影響。後續為了解熱處理及鍍層厚度對鋁鍍層的影響,分別以不同的持溫時間及析鍍電量討論鋁鍍層表面形貌、橫截面、化學成分及結晶結構的變化。此外,藉著電化學試驗,分析經不同處理條件的鋁鍍層
    其電化學性質及抗蝕能力的差異。
    本研究以掃描式電子顯微鏡(Scanning electron microscopy,SEM)對鎂合金原材與鋁鍍層及其經後續處理鍍層作顯微結構觀察,並以其配備的能量散射光譜(Energy dispersive spectroscopy, EDS)判別鍍層之化學組成。鑑定鍍層之結晶結構則利用X 光繞射分析儀(X-ray diffraction analyzer, XRD)。而於管形爐通入氬氣作為保護氣氛以每分鐘5 oC 的升溫速率將溫度提升至450 oC 後,分別持續不同時間以探討熱處理對於鍍層的影響。鍍層之電化學性質,則將試片包埋後於室溫中浸置於3.5 wt % 氯化鈉水溶液中,利用Autolab 進行開路電位測試(Open circuit potential, OCP)及動電位極化曲線測試(Potentiodynamic polarization);鍍層的耐蝕能力則於相同測試環境中,利用頻率分析儀(Frequency Response Analysis,FRA)進行電化學交流阻抗頻譜測試評估其耐蝕能力。
    實驗結果顯示,鎂合金原材浸漬於較高濃度的離子液體中會因置換反應而生成一較緻密的鋁鍍層,此鍍層也提供後續電鍍製程較為平整的表面,使得後續鍍層由表面形貌觀察可知具較連續、緻密、且具結晶性的鋁鍍層;其結晶結構則顯示隨著電鍍浴濃度的增加,於(200)結晶方向有優選成長的現象,表示鋁離子的沉積速率對其結晶結構影響極鉅。鋁鍍層經450 oC 熱處理十分鐘後成分並未明顯改變,經處理三十分鐘後,於鋁鍍層及鎂合金基材界面處形成一擴散區間(diffusion zone),此區間經X 光繞射鑑定由鎂鋁介金屬化合物Mg17Al12 組成,而擴散層隨著時間延長而僅有厚度上的改變,結晶結構則保持Mg17Al12(BCC)。
    電化學分析結果顯示,於鎂合金表面電鍍一鋁鍍層後,鋁鍍層於3.5 wt % 氯化鈉水溶液中開路電位均較鎂合金原材有所提升,經動電位極化測試後有鈍態區的生成,經電化學交流阻抗測試後,鋁鍍層之阻抗值也顯示鍍層可有效阻絕環境對鎂合金之腐蝕,且阻抗值隨著鍍層厚度的增加而提升。而經熱處理後的鍍層電化學分析結果顯示,持溫三十分鐘內之鍍層可能因鍍層成分不均造成開路電位不甚穩定,持溫超過六十分鐘之鍍層則因鍍層組成改變使鍍層活性較未經熱處理試片活潑。經動電位極化測試則顯示,持溫三十分鐘內之熱處理試片具有較低的腐蝕速率,持溫超過六十分鐘之試片則在電位高於腐蝕電位後迅速產生孔蝕而無鈍態區域的生成,顯示在高溫處理後,鋁含量較高的鍍層對環境腐蝕具較佳的抵抗力。

    Electrodeposition of a metallic aluminum coating on the magnesium alloy(AZ91D) in AlCl3-EMIC at 30 oC has been investigated in this research. The effects of the AlCl3 to EMIC molar ratio, in the range from 50 %–50 % to 60 %–40 %, on the reaction between the ionic liquid and Mg substrate as well as the electrodeposition characteristics were investigated. Heat treatment and various coating thickness were applied to understand the effects on the substrate surface reaction and coating characteristics. The composition, structure and corrosion behavior of various conditions of deposited layers were analyzed.
    Morphologies and compositions of a bare Mg alloy and Al-coated samples were examined in a Philip XL-40FEG SEM and its auxiliary energy dispersive spectroscope. X-ray diffraction analysis was also performed to identify crystal
    structures. A pipe tube was utilized to apply the heat treatment at 450 oC with Ar flow as the protective gas. The corrosion behaviors of the specimens, inclusive of open
    circuit potential, electrochemical impedance spectra, and potentiodynamic polarization curves, were measured in 3.5 wt % NaCl solution utilizing Autolab and Solartron 1255 electrochemical measurement system.
    The results indicated that deposition bath concentration was a crucial factor governing the quality of deposited layers and their corrosion resistances. XRD
    analysis showed a preferential growth on the (200) plane at higher concentration of deposition bath. With regard to heat treatment effects on the coating layers, no obvious composition variation can be seen after the Al-coated layer was heat-treated for 10 minutes. A diffusion layer composed of Mg17Al12 formed at the interface between Al coating and Mg alloy substrate after heat treatment for thirty minutes;meanwhile, the prolonging of treatment time resulted in the increase of the diffusion layer thickness.
    The corrosion resistance of Al-coated Mg alloy was evaluated in 3.5 wt % NaCl solution. The results indicated that coating layer made contribution to the improvement of the corrosion resistance. The open circuit potential as well as polarization resistance of the Mg alloy ameliorated after the electrodeposition of the aluminum coating layer. A passive region was observed in the Al-coating alloy in the potentiodynamic polarization test. The open circuit potential of the specimens maintaining at 450 oC for 30 minutes revealed a fluctuated curve, which probably resulted from the uneven composition of the heat-treated deposits;A passive region and lower corrosion rates were observed via potentiodynamic polarization tests.
    Specimens holding at the same temperature for over 60 minutes appeared active owing to the existence of Mg17Al12 ; besides, potentiodynamic polarization results
    showed no passive region.These results proved that Mg contents of the Al-coated Mg alloy increased as the prolonging of the heat treatment time, hence resulting in the failure of the corrosion resistance.

    摘要......................................... IV Abstract .....................................VI 誌謝..........................................VIII 總目錄 .....................................IX 表目錄 .....................................XIII 圖目錄 .....................................XIV 第一章、緒論 .......................................... 1 1.1前言 ............................................... 1 1.2研究目的………………………………………………………...5 第二章、理論基礎與文獻回顧………………………………13 2.1 鎂合金簡介 ................................... 13 2.1.1鎂合金之分類與命名法則 ...................... 13 2.1.2鎂合金的腐蝕……………………………………………13 2.2 鎂合金表面耐蝕處理…………………………………….15 2.2.1化成處理…………………………………………………15 2.2.2氣相沉積法………………………………………………16 2.2.3雷射披覆法………………………………………………17 2.2.4 有機/高分子鍍膜……………………………………….17 2.2.5 鎂合金陽極處理……………………………….………..18 2.2.6 電鍍與無電鍍……………………………….………….20 2.2.6.1電鍍之原理 ................................. 21 2.2.6.2金屬鍍層生成機制 ........................... 22 2.2.6.3成核與成長之條件 ........................... 22 2.3 鍍層-鋁之簡介 ................................ 23 2.3.1鋁的腐蝕 ..................................... 23 2.3.2鋁的結晶結構 ................................. 24 2.3.3熱處理對鋁鍍層的影響………………………………...24 2.3.4鋁之陽極化處理………………………………………...25 2.4 鍍液簡介……………………………………………………….26 2.4.1離子液體......................................... 26 2.4.2 Aluminum chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride (EMIC)...................... 27 第三章、實驗方法與步驟 ................................ 41 3.1 鍍液的配製 ........................................ 41 3.2 實驗材料與試片準備 ................................ 42 3.3 實驗裝備與儀器 .................................... 42 3.3.1裝備及器 ......................................... 42 3.4 電鍍處理程序 ...................................... 43 3.5 熱處理程序 ........................................ 44 3.6表面型態與結構成分分析 ............................. 44 3.7橫截面形貌與成分分析 ………………………………………44 3.8 鍍層耐蝕效果測試…………………………………………….45 3.8.1開路電位對時間之變化率測試 ...................... 45 3.8.2電化學交流阻抗測試 .............................. 45 3.8.3動電位極化曲線評估 .............................. 46 第四章、結果與討論 ................................... 51 4.1 鍍液之基本性質與基材的反應 ....................... 51 4.1.1鎂合金於不同比例鍍液中之基本性質…………………51 4.1.2開路電位下的鍍層表面形貌……………………………54 4.2於不同濃度AlCl3-EMIC電鍍之鋁鍍層觀察及評估 ........ 57 4.2.1施加定電位電鍍之電流對時間關係 .................. 57 4.2.2於不同濃度電鍍浴對鋁鍍層表面形貌與成分之影響 ... 59 4.2.3鋁鍍層之結晶構造 ................................ 61 4.2.4鍍鋁鎂合金開路電位對時間關係 .................... 63 4.2.5鍍鋁鎂合金電化學交流阻抗分析 .................... 65 4.2.6鍍鋁鎂合金動電位極化曲線測試 .................... 68 4.3 鍍層厚度對鍍層表面形貌及電化學性質之影響…………….70 4.3.1不同鋁鍍層厚度數對鍍層表面形貌之影響............. 70 4.3.2不同鋁鍍層厚度對鍍層晶體結構之影響 . …………...…72 4.3.3不同鋁鍍層厚度對鍍層開路電位之影響 .............. 74 4.3.4不同鋁鍍層厚度對電化學交流阻抗之影響……………76 4.3.5不同鋁鍍層厚度對動電位極化曲線之影響……………79 4.4後續熱處理對鍍層表面形貌及電化學性質之影響 ........ 81 4.4.1不同熱處理持溫時間對表面形貌及成分之影響 ........ 81 4.4.2不同熱處理持溫時間對結晶結構之影響 .............. 89 4.4.3經不同熱處理持溫時間對開路電位之影響 ............. 91 4.4.4經不同熱處理持溫時間對動電位極化曲線之影響 ....... 93 第五章、結論 .......................................... 97 參考文獻………………………………………………………99

    1. J. L. Gray, G. E. Maciel, Journal of Alloys and Compounds,2002.336:p.88-113.
    2. Jeng-Kuei Chang , Su-Yau Chen, Wen-Ta Tsai , Ming-Jay Deng , I-Wen Sun,Electrochemistry Communications,2007. 9: p. 1602-1606.
    3. H. Kuwahara, Y. Al-Abdullat, M. Ohta, S. Tsutsumi, K. Ikeuchi, N.Mazaki, T.Aizauta, Mater. Sci. Forum,2000: p. 350-351.
    4. R. Ambat, N.N.Aung., and W. Zhou, Corr. Sci, 2000. 42: p. 1443.
    5. G.L. Makar, J.Kruger, Journal of the electrochemical society, 1990. 137: p.414.
    6. G. Song, A. Atrens, D. St. John, X. Wu, and J. Nairn, Corr. Sci, 1997. 39: p.1981.
    7. Nick Birbilis, P.C. Howlett, Douglas R. MacFarlane, Maria Forsyth, Surface & Coatings Technology,2007. 201: p. 4496.
    8. M. Forsyth, P.C. Howlett, S.K. Tan, D.R. MacFarlane, and N. Birbills,Electrochem. Solid-State Lett, 2006. 9: p. B52.
    9. Z. Shi, G. Song, A. Atrens, Corr. Sci, 2005. 47: p.2760.
    10. Y. Zhang, C.Yan, F. Wang, H. Lou, and C. Cao, Surface & Coatings Technology, 2002. 161: p. 36.
    11. H.Y. Hsiao, H.C.Tsung, and W.T. Tsai, Surface & Coatings Technology, 2005.199: p. 127.
    12. H.Y. Hsiao, W.T. Tsai, Surface & Coatings Technology, 2005. 190: p. 299.
    13. H.Y. Hsiao, P.Chung, and W.T. Tsai, Corr. Sci, 2007. 49: p. 781.
    14. J. Kruger, G.L.Makar, International Materials Reviews, 1993. 38(No.3).
    15. H. Huo, Y.Li, F. Wang, Corrosion science, 2004. 46(No.6): p. 1467.
    16. Z. Liu, W.Gao, Surface and coatings technology, 2006. 200: p. 3553-3560.
    17. J. Li, Z.Shao, X. Zhang, and Y. Tian, Surface and coating technology, 2006.200(9): p. 3010.
    18. A. K. Sharma, M.R. Suresh, H. Bhojraj, H. Narayanamurthy, and R. P. Sahu,Metal finishing, 1998. 3: p. 10.
    19. N. El Mahallawy , A. Bakkar, M. Shoeib , H.Palkowski , V. Neubert, Surface & Coatings Technology 2008. 202: p. 5151.
    20. Jeng-Kuei Chang , S.Y.Chen, Wen-Ta Tsai , Ming-Jay Deng , I-Wen Sun,Electrochemistry Communications 2007. 9: p. 1602.
    21. G. Song, Adv. Eng. Mater., 2005. 7: p. 563.
    22. G. Song, A. Atrens, Adv. Eng. Mater, 1999. 1: p. 11.
    23. G. Song, A. Atrens, X. Wu, and B. Zhang, Corr. Sci. , 1998. 40: p. 1769.
    24. O. Lunder, J.E. Lein, T.K. Aune, and K. Nisancioglu, Corrosion 1989. 45: p.741.
    25. H.Y. Hsiao, W.T.Tsai, J. Mater. Res. , 2005. 20: p. 2763.
    26. I. Shigematsu, M. Nakamura, N. Saitou, K. Shimojima, J. Mater. Sci. Letter,2000. 19: p. 473.
    27. N. N. Aung, W. Zhou, J. Appl. Electrochemistry 2002. 32, p. 1397.
    28. M-X. Zhang, P. M. Kelly, J. Mater. Res., 2002. 17: p. 2477.
    29. J Zhang, Z. Sun, and H. Ye Materials Protection, 2003. 36(6): p. 17.
    30. S.K. Wu, S.C.Yen, T.S. Chou, Surface & Coatings Technology, 2006. 200: p.2769.
    31. M. Avedesian and H. Baker, ASM Specialty Handbook, 1999.
    32. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution,NACE, 1974.
    33. G. Song, A. Atrens, D. St. John, J. Nairn and Y. Li, Corr. Sci, 1997. 39(5): p.855
    34. R. Ambat, N.N.Aung, and W. Zhou, J. Appl. Electrochemistry, 2000. 30: p.865.
    35. R. Udhayan, D.P.Bhatt, Journal of power sources, 1996. 63: p. 103.
    36. H. Inoue, K.Sugahara, A. Yamamoto, H. Tsubakino, , Corr. Sci, 2000. 44: p.603.
    37. S. Mathieu, C.R., J. Hazan, P.Steinmetz, Corr. Sci, 2002. 44: p. 2737.
    38. C. D. Yim, K.S.Shin, Materials transactions, 2003. 44(4): p. 558.
    39. C. K. Mittal, Transactions of the Metal Finishers Association of India,1995. 4: p. 227.
    40. J. B. Mohler, Metal Finishing, 1974. 73: p. 30.
    41. H. Umehara, S.Terauchi, M. Takaya, Mater. Sci. Forum, 2000(350-351): p.273.
    42. A.U. Simaranov, S. L. Marshakov, Y. N. Mikhailovskii, Protection of Metals, 1990. 25: p. 611.
    43. I. Azkarate, P.Cano, A. Del Barrio, M. Insausti, P. Santa Coloma, Alternatives to Cr(VI) conversion coatings for magnesium alloys International Congress Magnesium Alloys and their Applications, 2000.
    44. D. Hawke, D. L. Albright, Metal Finishing Metal finishing, 1995. 93: p. 34.
    45. J.I. Skar, M. Water, D. Albright, Society of Automotive Engineers,International Congress and Exposition,, 1997: p. 7.
    46. M.A. Gonzalez-Nunez, C.A.Nunez-Lopez., P. Skeldon, G.E. Thompson, H.Karimzadeh, P. Lyon, T.E. Wilks, Corr. Sci, 1995. 37: p. 1763.
    47. M.A. Gonzalez-Nunez, P.Lyon, G.E. Thompson, H. Karimzadeh, Corrosion,1999. 55: p. 1136.
    48. A.L. Rudd, C.B.Breslin, F. Mansfeld, Corrosion Sci. , 2000. 42: p. 275.
    49. L. Wilson, B.Hinton, Method of forming a corrosion resistant coating in CA1292155,1990.
    50. R. H. Unger, Corrosion, 1987. 13: p. 459.
    51. G. Reiners, M.Griepentrog, Surface & Coatings Technology, 1995: p. 76.
    52. J. Senf, E. Broszeit, Adv. Eng. Mater, 1999. 1: p. 133.
    53. T. Yoshinori, Method for plating magnesium alloy. JP60024383, 1985.
    54. H. O. Pierson, Corrosion, 1987. 13,p. 456.
    55. C. Sella, J. Leceur, Y. Sampeur, P.Catania, Surface & Coatings Technology,1993: p. 287.
    56. T. M. Yue, A. H. Wang, and H. C. Man, Scripta materialia, 1999. 40(3): p. 303.
    57. J. D. Majumdar, B.R. Chandra, B. L. Mordike, R. Galun, and I. Manna,Surface and coatings technology, 2004. 179: p. 297.
    58. I. Nakatsugawa, Surface modification technology for magnesium in: International Magnesium Association, 1996: p. 24.
    59. D. S. Gnanamuthu, in Metal Surface Modification,1983.
    60. V.T. Truong, P. K. Lai, B.T. Moore, R.F. Muscat,, M.S. Russo Metals 2000.110: p. 7.
    61. G. P. Bierwagen, Prog. Organic Coat., 1996. 28: p. 43.
    62. K. Huber , Journal of the electrochemical society, 1953. 100(8): p. 376.
    63. O. Khaselev, Corr. Sci, 1998. 40(7): p. 1149.
    64. O. Khaselev, Journal of the electrochemical society, 1998. 145(1): p. 190.
    65. S. Ono, T. Osaka, K. Asami, N. Masuko,, Journal of the electrochemical society, 1996. 143(3): p. L62.
    66. S. Ono, T. Osaka, K. Asami, N. Masuko, Corrosion review, 1998. 16(1-2): p.175.
    67. S. Verdier, M. Boinet, S. Maximovitch, F. Darlard, Corr. Sci, 2005. 47: p.1429
    68. S. Ikonopisov, Electrochimic acta., 1977. 22: p. 1077.
    69. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, Surface and coatings technology, 1999. 122: p. 73.
    70. O. Khaselev, D. Weiss, J. Yahalom, Corr. Sci, 2001. 43: p. 1295.
    71. A. J. Zozulin, D.E.Bartak, Metal finishing, 1994. 3: p. 39.
    72. X. Zhou, G. E. Thompson, P. Skeldon, G. C. Wood, K. Shimizu, H. Habazaki,Corr. Sci, 1999. 41: p. 1599.
    73. S. J. Xia, R. Yue, R. G. Rateick Jr., V. I. Birss, Journal of the electrochemical society, 2004. 151(3): p. B179.
    74. V. Birss, S.Xia, R. Yue, R. G. Rateick Jr., Journal of the electrochemical society,2004. 151(1): p. B1.
    75. T. F. Barton, C.B. Johnson, Plating and surface finishing, 1995. 5: p. 138.
    76. O. Khaselev, J. Yahalom., Corr. Sci, 1998. 40(7): p. 1149.
    77. O. Khaselev, J. Yahalom, Journal of the electrochemical society, 1998. 145(1):p. 190.
    78. M. Takaya, Aluminum, 1989. 65: p. 1244.
    79. N. P. Wasekar, A. Jyothirmayi, L. R. Krishna, G. Sundarajan, Journal of Materials Engineering and Performance, 2008. 17(5): p. 708.
    80. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, Surface & Coatings Technology, 1999. 116-119: p. 1055.
    81. L. F. Spencer, Metal finishing, 1970. 32: p. 68.
    82. L. F. Spencer, Metal finishing, 1971. 69: p. 43.
    83. D.R. MacFarlane, Acc. Chem. Res. , 2007. 40: p. 1165.
    84. A. Bakkar, V. Neubert, Electrochemistry Communications, 2007,9 p. 2428.
    85. F. C. Walsh and M. E. Herron, J. Phys. D: Appl. Phys., 1991. 24: p. 217.
    86. R. Winand , J. Appl. Electrochemistry, 1991. 21(5): p. 377.87. D. Pletcher, A First Course in Electrode Processes. in The Electrochemical Consultancy. 1991. England
    88. R. Greef, R. Peat, L. M. Peter, D. Pletcher and J. Robinson, ed. Instrumental Methods in Electrochemistry. 1985, John Wiley & Sons, New York.
    89. D. Pletcher, F.C. Walsh, “Industrial Electrochemistry”. Blackie Academic & Professional, 1990.
    90. J. E. Hatch, “Aluminum properties and physical metallurgy”. American Society for Metals, 1984
    91. R. E. Reed-Hill, ed. Slip System in Different Crystal Forms. Physical Metallurgy Principles. 1994. 140~146.
    92. R. W. Cahn, Crystal Structures of The Metallic Elements. Physical Metallurgy
    93. A. P. Abbott, invited article. Physical Chemistry Chemical Physics.
    94. R. J. Gale, B. Gilbert, R.A. Osteryoung, Inorg. Chem., 1978. 17, p. 2728.
    95. R. J. Gale and R.A. Osteryoung, Inorg. Chem., 1980,19, p. 2240.
    96. Koura Nobuyuki, Tsuda Tetsuya, Journal of the electrochemical society, 2008,155 (2) D155-D157
    97. T. Jiang , M.J. Chollier Brym , G. Dubé , A. Lasia , G.M. Brisard, Surface & Coatings Technology, 2006,201, p.1
    98. U. Bardi , S. Caporali , M. Craig , A. Giorgetti , I. Perissi , J.R. Nicholls,Surface & Coatings Technology, 203 ,2009, p.1373–1378
    99. Q.X. Liu, S. Zein El Abedin , F. Endres, Surface & Coatings Technology,2006, 201, p.1352
    100. Stefano Caporali , Alessio Fossati, Alessandro Lavacchi, Ilaria Perissi,Alexander Tolstogouzov, Ugo Bardi, Corrosion Science, 2008, 50, p.534
    101. 梁天猷,國立成功大學化學所碩士論文,民國97年
    102. 林佳枚,國立成功大學材料所碩士論文,民國92年
    103. 陳樹友, 國立成功大學材料所碩士論文,民國96年
    104. J. A. Gonzalez, V. Lopez, A. Bautista, E. Otero, Journal of applied electrochemistry,1999, 29, p.229
    105. Yu Zuo, Peng-Hui Zhao, Jing-Mao Zhao, Surface & Coatings Technology,2003,166, p.237
    106. Yuelong Huang, Hong Shih, Huochuan Huang, John Daugherty, Florian Mansfeld, Corrosion Science, 2008, 50 ,p.3569
    107. R. L. Perry, K. M. Jones, W. D. Scott, Q. Liao, and C. L. Hussey, Journal of Chemical and Engineering Data 1995, 40, p.615
    108. 鎂合金成型產業,經濟部工業局,2006.07。
    109. 蔡辛甫,鎂合金在電子產品上的應用與產業概況,工業材料,p.62,1999.08。
    110. 蔡辛甫,筆記型電腦應用鎂合金的幾種重大理由,工業材料,p.116,1999.10。
    111. 王文梁,鎂合金與國外汽車產業之應用狀況與研發趨勢,金屬工業,p.58,2000.05。
    112. 廖芳俊,鍛造用Mg-Al-Zn 系鎂合金熔銲製程之探討,工業材料,p.169,2001.06。
    113. 蔡辛甫,輕金屬在新世代產品的應用於商機,2002.08。
    114. 蔡辛甫,電子資訊產品機構件金屬化趨勢,2003.03。
    115. 葉哲政,鎂合金在汽車產業之應用,p.1~5,2003.06。
    116. 陳中一,金字塔頂端的汽車零組件應用,金屬中心產業評析專欄,2009.03
    117. Juan Wang , Li Yajiang and Huang Wanqun , React. Kinet. Catal. Lett. , 2008,95 No.1,p. 71
    118. Natalia V. Plechkova and Kenneth R. Seddon, Chemical Society Review,2008, 37, p.123–150
    119. K. Spencer and M.X. Zhang, Scripta Materialia, 2009, 61, p. 44–47

    下載圖示 校內:立即公開
    校外:2009-07-30公開
    QR CODE