| 研究生: |
賴昇佑 Lai, Sheng-Yu |
|---|---|
| 論文名稱: |
應用三柱結構於子宮頸腫瘤單細胞之長期阻抗測量 Long-term Impedance Measurement of Single HeLa Cell in Microfluidic Channel with Planar Microelectrodes and Three-pillars Structure |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 30 |
| 中文關鍵詞: | 單細胞分析 、細胞阻抗 、微機電 、介電常數 、磷酸鹽緩衝液 |
| 外文關鍵詞: | single cell analysis, cell impedance, MEMS (Micro-Electro-Mechanical Systems), permittivity PBS (Phosphate Buffered Saline) |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞是生物體結構和生命活動的基本單元。在進行單細胞上研究,可以獲得反映細胞生理狀態和過程的更準確、更全面的資訊,還可以使人們能更好地瞭解細胞群體中某些特殊的細胞功能,更深入地認識細胞個體差異、資訊傳遞以及藥物刺激之影響等更深層次之特徵。近年來因微機電系統製程技術之發展,促使操控單一細胞之量測的得以實現。
單細胞阻抗分析可以提供準確以及深入的細胞病理狀態的訊息。然而測量環境中的細胞位置、電極的幾何結構等會影響單細胞的電特性。因此本研究提出了單細胞阻抗特性與位置之間的關係。本文中使用三柱結構捕捉單細胞而後利用阻抗分析儀測量子宮頸腫瘤單細胞阻抗。為了瞭解單細胞阻抗與位置的關係,建立的單細胞等效電路特性模型中加入一特性元件,此特性元件可以用分析細胞位置與阻抗變化之關係。藉由實驗的結果顯示細胞的阻抗與相位變化式由於細胞與電極之間的位置隨時間減少。當細胞被捕獲之後,單細胞隨著時間掉落。此外在細胞掉落的過程中,細胞會影響磷酸鹽緩衝液溶液裡的改變。
The impedance analysis of single cells can provide accurate and in-depth information about their pathological condition. However, the electrical properties of single cells will be affected by measurement environment such as cell location, electrodes geometry and so on. Accordingly, this study presents the relationship between impedance characteristics and location of the single HeLa cell. This study uses a microfluidic device to capture physically single cells with three-pillars microstructure and measure the impedance of a single HeLa cell (human cervical epithelioid carcinoma) using impedance spectroscopy. Additionally, in order to understand the relationship between impedance characteristics and location of the single HeLa cell, the equivalent circuit model is established and an element, , which depends on cell location is used for investigating the change of the single HeLa impedance. The measurement results show that the magnitude of a single HeLa cell impedance decreases and the phase of the single HeLa cell impedance changes from the hook line to the inverse line with the operating frequency from 1 to 100 kHz at operating voltage of 0.7 V in the time from 1 to 19 hours because the distance between the single HeLa cell and electrodes decrease. The single cell falls toward electrodes as time elapses after the single cell is trapped by three-pillars microstructure. Moreover, decreasing distance between the single HeLa cell and electrodes increasing due to the replacement of the single HeLa cell for PBS above the electrodes.
[1] Jang LS, Wang WH, 2007. Biomedical Microdevices, 9(5): 737-743.
[2] Cho, Y.H., Yamamoto, T., Sakai, Y., Fujii, T., Kim, B., 2006. Journal of Medieval and Early Modern Studies, 15 (2), 287-295.
[3] Wegener, J., Keese, C.R., Giaever, I., 2000. Experimental Cell Research, 259, 158–166.
[4] Varshney, M., Li, Y., 2008. Talanta, 74, 518–525.
[5] Asphahani, F., Thein, M., Veiseh, O., 2008. Biosensors and Bioelectronics, 23 (8), 1307-1313.
[6] Wang, MH., Jang, LS., 2009. Biosensors and Bioelectronics, 24, 2830-2835
[7] Gilchrist, K.H., Giovangrandi, L., Kovacs, G.T.A., 2001. Solid-State Sensors Actuators (Munich), 10-14.
[8] Schmukler, R., Johnson, G., Bao, J.Z., Davis, C.C., 1998. IEEE Engineering in Medicine and Biology Society (Rockville), 899-901.
[9] Bao, J.Z., David, C.C., Schmukler, R.E., 1993. IEEE Transactions on Biomedical Engineering, 40 (4), 364-378.
[10] Oren, Y., Freger, V., Linder, C., 2004. Journal of Membrane Science, (239) 17-26.
[11] J. C. McDonald and G. M. Whitesides, 2002. Accounts of Chemical Research, 35, 491-499.
[12] J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, 2000. Analytical Chemistry, 72, 3158-3164.
[13] J. Xu, L. Wu, Z. Yang, W. Yang, M. Huang, J. Cheng, and X. Wan, , 2001. MicroTAS, 313-314.
[14] Y. Huang, K. L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M. J. Heller, J. P. O'Connell, and M. Krihak, 2001. Analytical Chemistry, 73, 1549-1559.
[15] C. Rusu, R. van't Oever, M. J. de Boer, H. V. A. J. H. V. Jansen, J. W. A. B. J. W. Berenschot, M. L. A. B. M. L. Bennink, J. S. A. K. J. S. Kanger, B. G. A. d. G. B. G. de Grooth, M. A. E. M. Elwenspoek, J. A. G. J. Greve, J. A. B. J. Brugger, and A. A. v. d. B. A. van den Berg, 2001. Journal of Microelectromechanical Systems, 10, 238-246.
[16] J. C. Weaver and Y. A. Chizmadzhev, 1996. Bioelectrochemistry and Bioenergetics, 41, 135-160.
[17] H. Andersson, W. van der Wijngaart, P. Enoksson, and G. Stemme, 2000. Sensors and Actuators B: Chemical, 67, 203-208.
[18] O. Bakajin, R. Carlons, C. Chou, S. Chan, C. Gabel, J. Knight, T. Cox, and R. Austin, 1998. MicroTAS, 193-198.
[19] R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, 1997. Physical Review Letters, 79, 2149.
[20] S. D. James, R. G. Johnson, and R. E. Higashi, 1988. IEEE Solid State Sensor and Actuator Workshop, 107-108.
[21] W. H. Ko, 1989. VLSI and Computer Peripherals. VLSI and Microelectronic Applications in Intelligent Peripherals and their Interconnection Networks, 3-158.
[22] H. Fujita and A. Omodaka, 1987. IEEE Micro Robotics and Teleoperators Workshop, 10.
[23] T. Higuchi, Y. Hojjat, and M. Watanabe, 1987. IEEE Microrobots Teleoperators Workshop, 5.
[24] Gouy, G., 1909. Comtes Rendus of the French Academy of Sciences, 149, 654, 1910. Journal of Physics, 4, 9, 457.
[25] Chapman, D.L., 1913. Philosophical Magazine, 6, 25, 475.
[26] C. Yao, C. Sun, Y. Mi, S. Wang, L. Xiong, 2004. Journal of Chongqing University, Jun v27, 33-35.
校內:2013-05-17公開