簡易檢索 / 詳目顯示

研究生: 何緒昌
He, Hsu-Chang
論文名稱: 極音速蒙皮壁板於穿音速條件下之流固耦合
Transonic Fluid-Structure Interactions (FSI) of Hypersonic Skin-Panels
指導教授: 黃捷楷
Gaetano G. M. Currao
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 93
中文關鍵詞: 穿音速流固耦合模型降階有限迴圈震盪非線性氣彈氣顫
外文關鍵詞: Transonic fluid-structure-interactions, Reduced-Order-Models, LCOs, Nonlinear Aeroelasticity, Panel flutter
相關次數: 點閱:163下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討金屬平板(紅銅)在邊界條件為完全固定下,於穿音速流場中之流固耦合現象。兩種平板配置:1. Clean geometry以及2. Post in the middle於馬赫數為0.8, 0.9條件下之流固耦合實驗於成大航太研究中心(ASTRC)穿音速風洞進行測試並與雙向流固耦合(FSI)數值模擬結果進行比較。起初理想化的條件設定(材料參數、理想邊界條件、忽略重力影響…)結果指出在長厚比0.45% 、Clean geometry 配置,以及長厚比0.53% 、Post in the middle配置下之金屬板產生之結構震盪最為不穩定,其前兩個震盪模態之頻率非常接近並且擁有相近的能量分佈,被視為一種可能的震盪機制。進一步與實驗結果比對顯示實驗中的位移幅度比模擬結果小一個量級,表明雙向流固耦合模擬應該考慮到風洞全尺寸模擬、實際的平板固定方式、內艙的形狀以及風洞流場的背景噪音。靜態流場測試使用了kulite壓力感應器和PSP進行多點以及全平板面的壓力量測,其結果指出流場壓力大致平均分布然而流場卻非對稱。最後比對結果顯示在clean geometry配置下大致位移趨勢仍然與實驗相符,然而post geometry配置下,由於實驗技術原因,其結果之比對差異較為大,有待之後進一步研究。最後總結,實驗與模擬在平板的位移幅度以及振動頻率位移的比對上大致是相符合。

    In this work, transonic fluid-structure-interactions of a copper compliant panel clamped on all edges was studied numerically and experimentally at Mach 0.8 and 0.9. The aforementioned configuration and a modified version with a single support, or post, in the middle were both tested in Aerospace Science and Technology Research Center (ASTRC) transonic wind tunnel under nominal condition: M=0.8, 0.9. Fully coupled flu-id-structure interactions (FSI) numerical simulations were also performed to simulate the experiments. The initial work on idealized panel (nominal material properties, ideal boundary conditions and flow domain) suggested that the with-post configuration is clos-er to flutter by modal coalescence for a thickness-to-length ratio of 0.53%, while the clean configuration has a critical thickness of 0.45%. Comparison with experiments, however showed large discrepancies in terms of maximum deflection, indicating that the FSI simulations should take into account of the actual geometry of the panel support, test-section geometry, cavity shape and noise in the flow. Static tests with kulite pressure transducers sensor and pressure-sensitive paint (PSP) revealed a roughly uniform pres-sure distribution within a 5% spatial variation, but also flow asymmetry. Clean geometry experiment agreed well with the simulations, however the experiment with a central post underwent to technical problem and will be redone in the future. Overall there is a good agreement between simulations and experiment in terms of amplitude and natural fre-quency shift induced by the flow.

    ABSTRACT I 摘要 II ACKNOWLEDGEMENT III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES XI NOMENCLATURES XII 1. INTRODUCTION 1 2. LITERATURE REVIEW 5 2.1. Effect of cavity 6 2.2. Effect of mass ratio 6 2.3. Effect of structural damping 8 2.4. Effect of length to width ratio and Mach number 8 2.5. Modal content 9 2.6. Effect of transverse and in-plane loads, static pressure differential 9 2.7. Curved plate 11 3. NUMERICAL TECHNIQUE 15 4. EXPERIMENTAL SETUP 18 4.1. ASTRC transonic wind tunnel 18 4.2. Wind tunnel model set-up 20 4.3. Case studies 25 4.4. Characterization of test panels 27 4.4.1. Modulus of elasticity (E) 27 4.4.2. Natural frequency (fN1, fN2) 29 4.5. Effect of Poisson’s ratio (ν) 30 4.6. Static analysis (Pressure and mean deflection) 31 4.6.1. PSP (UNiFiB) calibration curve 33 4.6.2. Static test results (Pressure uniformity) 35 4.6.3. Kulite measurement (XCS-093-25A) 36 4.6.4. Mean deflection trend 42 5. INITIAL WORK ON IDEAL PANEL 53 5.1. Maximum deflection 53 5.2. Clean configuration 54 5.3. Post Configuration 55 5.4. Low-Fidelity Model-SPOD 57 5.5. Comparison between experiments and simulations 60 6. VALIDATION 61 6.1. Description of geometry 61 6.2. Comparison between experiments and simulations 69 6.2.1. Clean configuration 69 6.2.2. Post configuration 75 6.3. Discussion 81 6.3.1. CLEAN CONFIGURATION 81 6.3.2. POST CONFIGURATION 83 7. CONCLUSION 85 REFERENCES 86 APPENDIX 89 Kulite sensor (XCS-093-25A) and Calibration 89 Laser scanner (optoNCDT1420) 90 PSP (UniFiB) 90 k-ω SST turbulence model 91

    1. McNamara, J.J. and P.P. Friedmann, Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future. AIAA journal, 2011. 49(6): p. 1089-1122.
    2. Purwar, A. and B. Basu, Thermo‐structural design of ZrB2–SiC‐based thermal protection system for hypersonic space vehicles. Journal of the American Ceramic Society, 2017. 100(4): p. 1618-1633.
    3. Xie, D., B. Dong, and X. Jing, Effect of thermal protection system size on aerothermoelastic stability of the hypersonic panel. Aerospace Science and Technology, 2020. 106: p. 106170.
    4. Le, V.T., N. San Ha, and N.S. Goo, Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review. Composites Part B: Engineering, 2021. 226: p. 109301.
    5. Burns, B., HOTOL space transport for the twenty-first century. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1990. 204(2): p. 101-110.
    6. Varvill, R. and A. Bond, Application of carbon fibre truss technology to the fuselage structure of the SKYLON spaceplane. JOURNAL-BRITISH INTERPLANETARY SOCIETY, 2004. 57(5/6): p. 173-185.
    7. Dowell, E.H. and E.H. Dowell, Nonlinear aeroelasticity. A Modern Course in Aeroelasticity: Fifth Revised and Enlarged Edition, 2015: p. 487-529.
    8. Xiang, J., Y. Yan, and D. Li, Recent advance in nonlinear aeroelastic analysis and control of the aircraft. Chinese Journal of Aeronautics, 2014. 27(1): p. 12-22.
    9. Dowell, E.H. and H. Voss, Experimental and Theoretical Panel Flutter Studies in the Mach Number Range of 1.0 to 5.0. Vol. 63. 1963: Air Force Flight Dynamics Laboratory, Research and Technology Division, Air ….
    10. Johns, D., A Review of Panel Flutter at Low Supersonic Speeds. The Aeronautical Journal, 1965. 69(657): p. 627-631.
    11. Flutter, F.I., L.C.O. LCO, and H.D.H. Balance, Some Recent Advances in Nonlinear Aeroelasticity: Fluid-Structure Interaction in the 21st Century.
    12. Lübker, J. and M. Alder, Experimental investigations on aerodynamic response of panel structures at high subsonic and low supersonic mach numbers. Transportation Research Procedia, 2018. 29: p. 222-232.
    13. Wang, G., H. Zhou, and H.H. Mian, Numerical analysis on modal stability characteristics of 2D panel flutter at low supersonic speeds. Journal of Fluids and Structures, 2021. 103: p. 103296.
    14. Edwards, J.W., Calculated viscous and scale effects on transonic aeroelasticity. Journal of Aircraft, 2008. 45(6): p. 1863-1871.
    15. Hashimoto, A., T. Aoyama, and Y. Nakamura, Effects of turbulent boundary layer on panel flutter. AIAA journal, 2009. 47(12): p. 2785-2791.
    16. Dowell, E., Aerodynamic boundary layer effects on flutter and damping of plates. Journal of aircraft, 1973. 10(12): p. 734-738.
    17. Bunton, R.W. and C.M. Denegri Jr, Limit cycle oscillation characteristics of fighter aircraft. Journal of aircraft, 2000. 37(5): p. 916-918.
    18. Dowell, E.H. and D. Tang, Nonlinear aeroelasticity and unsteady aerodynamics. AIAA journal, 2002. 40(9): p. 1697-1707.
    19. Sigrist, J.-F. and S. Garreau, Dynamic analysis of fluid–structure interaction problems with modal methods using pressure-based fluid finite elements. Finite Elements in analysis and design, 2007. 43(4): p. 287-300.
    20. Towne, A., O.T. Schmidt, and T. Colonius, Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. Journal of Fluid Mechanics, 2018. 847: p. 821-867.
    21. Kou, J. and W. Zhang, An improved criterion to select dominant modes from dynamic mode decomposition. European Journal of Mechanics - B/Fluids, 2017. 62: p. 109-129.
    22. Schmidt, O.T. and T. Colonius, Guide to Spectral Proper Orthogonal Decomposition. AIAA Journal, 2020. 58(3): p. 1023-1033.
    23. Sieber, M., C.O. Paschereit, and K. Oberleithner, Spectral proper orthogonal decomposition. Journal of Fluid Mechanics, 2016. 792: p. 798-828.
    24. Tang, D., et al., System identification and proper orthogonal decomposition method applied to unsteady aerodynamics. AIAA journal, 2001. 39(8): p. 1569-1576.
    25. Hall, K.C., J.P. Thomas, and E.H. Dowell, Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA journal, 2000. 38(10): p. 1853-1862.
    26. Dunnmon, J., et al., Power extraction from aeroelastic limit cycle oscillations. Journal of fluids and structures, 2011. 27(8): p. 1182-1198.
    27. Thomas, J.P., E.H. Dowell, and K.C. Hall, Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced-order models. Journal of Aircraft, 2003. 40(3): p. 544-551.
    28. Yang, Z., et al., An improved nonlinear reduced-order modeling for transonic aeroelastic systems. Journal of Fluids and Structures, 2020. 94: p. 102926.
    29. Dowell, E.H., Noise or flutter or both? Journal of Sound and Vibration, 1970. 11(2): p. 159-180.
    30. Dowell, E.H., Nonlinear oscillations of a fluttering plate. AIAA journal, 1966. 4(7): p. 1267-1275.
    31. Dowell, E.H., Nonlinear oscillations of a fluttering plate. II. AIAA journal, 1967. 5(10): p. 1856-1862.
    32. Dowell, E.H., Nonlinear flutter of curved plates. AIAA Journal, 1969. 7(3): p. 424-431.
    33. Dowell, E.H., Nonlinear flutter of curved plates. II. AIAA Journal, 1970. 8(2): p. 259-261.
    34. Dowell, E.H., Panel flutter-A review of the aeroelastic stability of plates and shells. AIAA journal, 1970. 8(3): p. 385-399.
    35. Dowell, E., J. Edwards, and T. Strganac, Nonlinear aeroelasticity. Journal of aircraft, 2003. 40(5): p. 857-874.
    36. Küchemann, D., Hypersonic aircraft and their aerodynamic problems. Progress in Aerospace Sciences, 1965. 6: p. 271-353.
    37. Bowcutt, K.G. Physics drivers of hypersonic vehicle design. in 22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference. 2018.
    38. Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 1994. 32(8): p. 1598-1605.
    39. Šekutkovski, B., et al., Three-dimensional fluid–structure interaction simulation with a hybrid RANS–LES turbulence model for applications in transonic flow domain. Aerospace Science and Technology, 2016. 49: p. 1-16.
    40. Currao, G.M., et al., Hypersonic fluid–structure interaction on a cantilevered plate with shock impingement. AIAA journal, 2019.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE