簡易檢索 / 詳目顯示

研究生: 羅貫倫
Lo, Kuan-Lun
論文名稱: 應用疊代式聚合之即時立體匹配演算法及其VLSI實現
A Real-time Stereo Matching Algorithm with Iterative Aggregation and Its VLSI Implementation
指導教授: 劉濱達
Liu, Bin-Da
楊家輝
Yang, Jar-Ferr
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 82
中文關鍵詞: 疊代式聚合立體匹配深度圖視差
外文關鍵詞: iterative aggregation, stereo matching, depth map, disparity
相關次數: 點閱:237下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統立體匹配方式需要使用匹配視窗並且計算其中每一像素與中心點之間的權重進而計算整個視窗的匹配成本,如此一來會耗費大量運算時間,在硬體實現時也會耗費更多的資源,進而造成效率的降低。本論文提出一種快速立體匹配演算方式,使用三組一維疊代方式生成支援區域,取代傳統匹配視窗之方式以聚合匹配成本,大幅降低運算複雜度,並且更易於硬體架構的實現。
    本演算法首先計算出由顏色普查式轉換後的位元串之間的漢明距離作為原始匹配成本,配合改良的適應性權重進行疊代式成本聚合後,再決定最佳視差進而得到初始深度圖,最後將邊緣及遭遮擋之區域做修補之後可得到更精確之結果。
    同時,本論文也設計了對應演算法之硬體架構,並以Altera之 FPGA加以實現,此架構共需約27k個邏輯單元、78k個暫存器及約4.8Mb的記憶體儲存量,時脈最快可達160 MHz,提供解析度1920 × 1080、每秒60張且深度搜尋範圍為64層之處理速度。

    Traditional local stereo matching methods, which require a window and its weights between the center pixel and neighboring pixels to compute matching cost, acquire more computation and consume more resources. Once they are implemented in hardware, the window-based aggregation decreases the efficiency. In this thesis, a fast local stereo matching algorithm is proposed by replacing window-based aggregation with three one-dimensional iterative aggregation processes to construct the effective support region. The iterative aggregation reduces complexity and is suitable for hardware realization.
    The proposed algorithm computes raw matching costs with Hamming distances of bit-streams resulted from color census transform, then, uses modified adaptive support weights to perform iterative aggregations for estimation of best disparities. Refinement is used to repair error disparities in boundary and occluded regions.
    Furthermore, the corresponding VLSI is provided and realized in Altera FPGA. The design requires 27k logic elements, 78k registers and 4.8Mb RAM, and the speed achieves 60 frames per second with 1920 × 1080 resolution and 64 disparity levels in 160 MHz.

    Abstract (Chinese) i Abstract (English) iii Acknowledgement v Table of Contents vii List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the Thesis 3 Chapter 2 Background and Review 5 2.1 Concept of Stereopsis 5 2.2 Fundamental Theorem of Stereo Matching 6 2.3 Basic Flow of Stereo Matching 8 2.3.1 Matching Cost Computation 9 2.3.2 Cost Aggregation 12 2.3.3 Disparity Decision and Optimization 13 2.3.4 Disparity Refinement 13 2.4 Related Work 14 2.4.1 Global Approaches 14 2.4.2 Local Approaches 15 2.4.3 Hardware Oriented Algorithms 22 Chapter 3 The Proposed Stereo Matching Algorithm 23 3.1 Overview of Proposed Algorithm 23 3.2 Modified Census and Matching Cost 25 3.3 Iterative Aggregation 29 3.4 Disparity Decision and Refinement 41 Chapter 4 Hardware Implementation 47 4.1 Environments and Specifications 47 4.2 System Architecture and Design 50 4.2.1 Overall Design 50 4.2.2 Design of the Modules 51 Chapter 5 Experimental Results 57 5.1 Environments and Settings 57 5.2 Quality Evaluation 63 5.3 Hardware Performance and Efficiency 71 Chapter 6 Conclusion and Future Work 75 6.1 Conclusion 75 6.2 Future Work 76 References 79

    [1] C. Fehn, “Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV,” in Proc. SPIE Conf. Electron. Imaging, May 2004, pp. 93–104.
    [2] L. H. Wang, X. J. Huang, M. Xi, D. X. Li, and M. Zhang, “An asymmetric edge adaptive filter for depth generation and hole filling in 3DTV,” IEEE Trans. Broadcast., vol. 56, pp. 425–431, Sept. 2010.
    [3] K. J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, pp. 650–656, Apr. 2006.
    [4] I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis. New York: Oxford University Press, 1995.
    [5] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: theory and experiment,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, pp. 920–932, Sept. 1994.
    [6] Y. Boykov, O. Veksler, and R. Zabih, “A variable window approach to early vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 1283–1294, Dec. 1998.
    [7] O. Veksler, “Stereo correspondence with compact windows via minimum ratio cycle,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, pp. 1654–1660, Dec. 2002.
    [8] Z. Ke, L. Jiangbo, and G. Lafruit, “Cross-based local stereo matching using orthogonal integral images,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, pp. 1073–1079, July 2009.
    [9] Y. Wei and L. Quan, “Region-based progressive stereo matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., June 2004, pp. 106 –113.
    [10] S. Xun, M. Xing, J. Shaohui, Z. Mingcai, and W. Haitao, “Stereo matching with reliable disparity propagation,” in Proc. IEEE Int. Conf. 3D Imaging, Model., Process., Vis. Transm., May 2011, pp. 132–139.
    [11] A. F. Bobick and S. S. Intille, “Large occlusion stereo,” Int. J. Comput. Vis., vol. 33, pp. 181–200, Sept. 1999.
    [12] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, pp. 1222–1239, Aug. 2001.
    [13] P. F. Felzenszwalb and D. R. Huttenlocher, “Efficient belief propagation for early vision,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., June 2004, pp. 261–268.
    [14] Y. C. Chang, T. H. Tsai, B. H. Hsu, Y. C. Chen and T. S. Chang, “Algorithm and architecture of disparity estimation with min-census adaptive support weight,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 792–805, June 2010.
    [15] Q. Q. Yang, D. X. Li, L. H. Wang and M. Zhang, “Full-image guided filtering for fast stereo matching.” IEEE Signal Process. Lett., vol. 20, No. 3, pp. 237–240, Mar. 2013.
    [16] C. C. Pham and J. W. Jeon, “Domain transformation-based efficient cost aggregation for local stereo matching,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, pp. 1119–1130, July 2013
    [17] C. Georgoulas and I. Andreadis, “A real-time occlusion aware hardware structure for disparity map computation,” in Proc. Conf. Image Anal. Process., June 2009, pp. 721–730.
    [18] K. Ambrosch, M. Humenberger, W. Kubinger, and A. Steininger, “A SAD-based stereo matching using FPGAs,” in Proc. Conf. Embed. Comput. Vis., Dec. 2009, pp. 121–138.
    [19] A. Darabiha, J. MacLean, and J. Rose, “Reconfigurable hardware implementation of a phasecorrelation stereo algorithm,” Mach. Vision Appl., vol. 17, pp. 116–132, Apr. 2006.
    [20] D. W. Yang, L. C. Chu, C. W. Chen, J. Wang and M. D. Shieh, “Depth-reliablity-based stereo matching algorithm and its VLSI architecture design,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, pp. 1038–1050, Oct. 2014
    [21] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S.-K. Park, M. Kim, and J. W. Jeon, “FPGA design and implementation of a real-time stereo vision system,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 15–26, Jan. 2010.
    [22] K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vision,” Comput. Vis. Image Und., vol. 115, pp. 1303–1316, Feb. 2011.
    [23] C. Ttofis and T. Theocharides, “Towards accurate hardware stereo correspondence: A real-time FPGA implementation of a segmentation-based adaptive support weight algorithm,” in Proc. IEEE Conf. Design, Autom. Test., Mar. 2012, pp. 703–708.
    [24] W. Q. Wang, J. Yan, N. Y. Xu, Y. Wang and F. H. Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol., pp. 1–14. (Available online Jan. 30, 2015).
    [25] X. Mei, X. Sun, M. Zhou, S. H. Jiao, H. Wang and X. Zhang, “On building an accurate stereo matching system on graphics hardware,” in Proc. IEEE Conf. Comput. Vis. Workshops, Nov. 2011, pp. 467–474.
    [26] A. Aysu, M. Sayinta, C. Cigla, “Low cost FPGA design and implementation of a stereo matching system for 3D-TV applications,” in Proc. IEEE Conf. Very Large Scale Integr., Oct. 2013, pp. 204–209.
    [27] D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” in Proc. IEEE workshop Stereo Multi-Baseline Vision, Dec. 2001, pp. 131–140.
    [28] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., June 2003, pp. 195–202.
    [29] D. Scharstein and C. Pal, “Learning conditional random fields for stereo,” in Proc. IEEE Conf. Comput. Vision and Pattern Recogn., June 2007, pp. 1–8.
    [30] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in Proc. IEEE Conf. Comput. Vision and Pattern Recogn., June 2007, pp. 1–8.
    [31] Middlebury Stereo Vision Page [Online]. Availale: http://vision.middlebury.edu/stereo
    [32] P. L. Chu, “Stereo matching algorithm with fast disparity propagation under homogeneous texture detection and its VLSI implementation,” M.S. thesis, Dept. Elect. Eng., Natl. Cheng Kung Univ., Tainan, Taiwan, 2012.
    [33] C. C. Tien, “A fast coarse-to-fine stereo matching algorithm and its VLSI implementation,” M.S. thesis, Dept. Elect. Eng., Natl. Cheng Kung Univ., Tainan, Taiwan, 2013.
    [34] H. W. Ho, “A fast local stereo matching algorithm with simple edge detection and its VLSI implementation,” M.S. thesis, Dept. Elect. Eng., Natl. Cheng Kung Univ., Tainan, Taiwan, 2014.

    下載圖示 校內:2020-08-20公開
    校外:2020-08-20公開
    QR CODE