簡易檢索 / 詳目顯示

研究生: 陳禹嘉
Chen, Yu-Chia
論文名稱: 具零電壓切換之雙電感電流饋入隔離型高升壓轉換器
Novel ZVS Dual-Inductor Current-Fed Isolated High Step-up DC-DC Converter
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 64
中文關鍵詞: 高升壓主動箝位零電壓切換電流饋入式
外文關鍵詞: high step-up, active clamp, ZVS, current-fed
相關次數: 點閱:161下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高升壓轉換器廣泛應用在太陽能系統,但傳統式升壓型轉換器在實務上不易達到足夠的升壓比,另外基於安全規範,許多系統需做電氣隔離,因此本論文提出一新型高升壓轉換器。透過調整耦合電感之匝數比可以達到高升壓比,此外因變壓器極性轉換使雙電容並聯充電和串聯放電可達到更高升壓比。相似的概念運用在輸入電感,使雙電感並聯充電和串聯放電,因此輸入電流被兩電感分流,另外由於主動箝位電路之使用,所有開關可達零電壓切換,此轉換器具有降低導通損失及切換損失的特性。本文首先說明新型高升壓轉換器之動作模式和穩態分析,其次設計主電路元件參數。最後實作一組輸入電壓12 V,輸出電壓400 V,輸出功率200 W之新型高升壓轉換器,並藉由實驗結果驗證本論文之理論分析。

    High step-up DC-DC converter are widely used in PV systems, but the traditional boost converter is not easy to achieve enough voltage gain in practical terms. Besides, isolation is required in many systems due to the safety standards. Therefore, a novel high-step converter is proposed. With the coupled-inductor technique, high voltage gain is achieved by adjusting the turns ratio, and two capacitors are charged in parallel and discharge in series to create higher voltage gain due to the change of transformer polarity. On the input side, two inductors are charged in parallel and discharge in series, thus, the input current is shared by two inductors. Besides, ZVS operation of all switches are achieved with active-clamp circuit. The proposed converter has the characteristics of low conduction loss and switching loss. First the operation principle and steady-state analysis are performed, then the design procedure is described. Finally, a prototype of the proposed converter with input voltage 12V, output voltage 400 V, and output power 200W is implemented to verify the theoretical analysis.

    中文摘要 ..I Abstract ..II 誌謝 ..III Contents ..IV List of Figures ..VII List of Tables ..IX Chapter 1 Introduction ..1 1.1 Motivation ..1 1.2 Outline of this thesis ..2 Chapter 2 High Step-up Converters ..4 2.1 Non-isolated step-up converter ..4 2.1.1 Boost converter ..4 2.1.2 Cascade step-up converter ..5 2.1.3 Switched-capacitor step-up converter ..6 2.1.4 Voltage-lift step-up converter ..7 2.1.5 Coupled-inductor step-up converter ..9 2.2 Isolated step-up converter ..11 2.2.1 Flyback converter ..11 2.2.2 Push-pull converter ..12 2.2.3 Current-fed push-pull converter ..13 2.2.4 Half-bridge converter ..15 2.2.5 Full-bridge converter ..15 2.3 Comparison and discussion ..16 Chapter 3 Novel ZVS Dual-Inductor Current-Fed Isolated High Step-up DC-DC converter ..18 3.1 The proposed high step-up DC-DC converter ..18 3.2 Operational principle of the proposed converter ..19 3.2.1 Continuous conduction mode (CCM) operation ..19 3.2.2 Steady-state analysis of CCM operation ..24 3.2.3 Discontinuous conduction mode (DCM) operation ..26 3.2.4 Boundary condition analysis ..31 3.3 The proposed high step-up DC-DC converter with active clamp circuit ..33 3.3.1 Operational principle of the proposed converter with active clamp circuit ..33 3.3.2 Steady-state analysis ..41 Chapter 4 Circuit Design, Simulation Results and Experimental Results ..42 4.1 Inductor design ..43 4.1.1 Magnetizing inductor ..43 4.1.2 inductor L1 and L2 ..43 4.2 Capacitor design ..44 4.2.1 Capacitor C1 ..44 4.2.2 Capacitor C2 and C3 ..44 4.2.3 Capacitor Co ..45 4.3 Diode parameter design ..45 4.3.1 Diode D1 and D2 ..45 4.3.2 Diode Do ..45 4.4 Switch S1, S2 and S3 parameter design ..46 4.5 Main switch ZVS operation design ..47 4.6 Simulation results ..48 4.7 Experimental results ..50 4.7.1 Experimental results under output power Po=40 W ..51 4.7.2 Experimental results under output power Po=120 W ..51 4.7.3 Experimental results under output power Po=200 W ..51 4.8 Conversion efficiency measurement result ..58 Chapter 5 Conclusion and Future Work ..59 5.1 Conclusion ..59 5.2 Future work ..59 References ..60

    [1] J. M. Kwon and B. H. Kwon, “High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems,” IEEE Transaction on Power Electronics, vol. 24, no. 1, pp. 108-115, Jan. 2009.
    [2] L. Palma, M. H. Todorovic, and P. Enjeti, “A high gain transformer-less DC-DC converter for fuel-cell applications,” IEEE Power Electronics Specialists Conference, pp. 2514-2520, Jun. 2005.
    [3] L. S. Yang, T. J. Liang, and J. F. Chen, “Transformer-less DC-DC converter with high voltage gain,” IEEE Transaction on Industrial Electronics, vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
    [4] F. L. Luo and H. Ye, “Positive output multiple-lift push–pull switched-capacitor Luo-converters,” IEEE Transaction Industrial Electronics, vol. 51, no. 3, pp. 594-602, Jun. 2004.
    [5] F. Zhang, L. Du, F. Z. Peng, and Z. Qian, “A new design method for high-power high-efficiency switched-capacitor DC–DC converters,” IEEE Transaction on Power Electronics, vol. 23, no. 2, pp. 832-840, Mar. 2008.
    [6] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Transaction on Circuits and Systems I, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
    [7] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Transaction on Circuits and Systems I, vol. 55, no. 2, pp. 687-696, Mar. 2008.
    [8] F. L. Luo and H. Ye, “Positive output super-lift converters,” IEEE Transaction on Power Electronics, vol. 18, no. 1, pp. 105-113, Jan. 2003.
    [9] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capapcitor (SC) / Switched-inductor (SL) structures for getting hybrid step-down Cuk/Zeta/Sepic converters,” IEEE International Symposium on Circuits and Systems, pp. 5063-5066,May 2006.
    [10] F. L. Luo, “Six self-lift DC–DC converters, voltage lift technique,” IEEE Transaction on Industrial Electronics, vol. 48, no. 6, pp. 1268-1272, Dec. 2001.
    [11] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched coupled-inductor cell for DC-DC converters with very large conversion ratio,” IET Power Electronics, vol. 4,pp. 309-315, Mar. 2011.
    [12] Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc-dc converters,” IEEE Transaction Power Electronics, vol. 18, no. 1, pp. 65-73, Jan. 2003.
    [13] B. R. Lin and F. Y. Hsieh, “Soft-switching zeta–flyback converter with a buck–boost type of active clamp,” IEEE Transaction Industrial Electronics, vol. 54, no. 5, pp. 2813-2822, Oct. 2007.
    [14] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “Boost converter with coupled inductors and buck–boost type of active clamp,” IEEE Transaction Industrial Electron., vol. 55, no. 1, pp. 154-162, Jan. 2008.
    [15] J. A. Carr, D. Hotz, J. C. Balda, H.A. Mantooth, A. Ong, and A. Agarwal, “Assessing the impact of SiC MOSFETs on converter interfaces for distributed energy resources,” IEEE Transaction Power Electronics, vol. 24, no. 1, pp. 260-270, Jan. 2009.
    [16] N. P. Papanikolaou and E. C. Tatakis, “Active voltage clamp in flyback converters operating in CCM mode under wide load variation,” IEEE Transaction Industrial Electron., vol. 51, no. 3, pp. 632-640, Jun. 2004.
    [17] F. L. Luo and H. Ye, “Positive output cascade boost converters,” IEE Proceeding Electric Power Applications, vol. 151, no. 5, pp. 590-606, Sep. 2004.
    [18] F. L. Luo, H. Ye,” Positive output super-lift converters,” IEEE Transaction on Power Electronics, vol. 18, pp. 105 - 113, Jan. 2003.
    [19] Q. Zhao, F. Tao, and F. C. Lee, “A front-end DC-DC converter for network server applications,” IEEE Power Electronics Specialists Conference, vol. 3, pp. 1535-1539, Jun. 2001.
    [20] K. Harada and H. Sakamoto, “Switched snubber for high frequency switching,” IEEE Power Electronics Specialists Conference, pp. 181-188, Jun. 1990.
    [21] Q. Zhao, F. Tao, Y. Hu, and F. C. Lee, “Active-clamp DC-DC converters using magnetic switches,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 946-952, Mar. 2001.
    [22] J. H. Kim, M. H. Ryu, B. D. Min, and E. H. Song, “A Method to Reduce Power Consumption of Active-Clamped Flyback Converter at No-Load Condition,” IEEE Industrial Electronics, pp. 2811-2814, Nov. 2006.
    [23] C. M. Wang, J. H. Su, and C. H. Yang, “A novel ZCS-PWM flyback converter with a simple ZCS-PWM auxiliary circuit,” International Conference on Power Electronics and Drives Systems, vol.1, pp. 805-810, 2005.
    [24] P. J. Wolfs, “A current-sourced DC-DC converter derived via the duality principle from half-bridge converter,” IEEE Transaction on Industrial Electronics, vol. 40, no. 1, pp. 139-144, Feb. 1993.
    [25] I. Boonyaroonate and S. Mori, “A new ZVCS resonant push-pull DC-DC converter topology,” IEEE Applied Power Electronics Conference and Exposition, vol.2, pp. 1097-1100, Mar. 2002.
    [26] M. Shoyama and K. Harada, “Zero-voltage-switched push-pull DC-DC converter, ” IEEE Power Electronics Specialists Conference, pp. 223-229, Jun. 1991.
    [27] F. Zhang, H. Qin, H. Wang, and Y. Yan,“Freewheeling current in push-pull forward converter,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 353-358, Jun. 2003.
    [28] W. C. P. De Aragao Filho and I. Barbi, “A comparison between two current-fed push-pull DC-DC converters-analysis, design and experimentation, ” IEEE Telecommunications Energy Conference, pp. 313-320, Oct. 1996.
    [29] J. I. Kang, C. W. Roh, G. W. Moon, and M. J. Youn, “Design of phase-shifted parallel-input/series-output dual inductor-fed push-pull converter for high-power step-up applications,” IEEE Industrial Electronics Society, vol. 2, pp. 1249-1254, Dec. 2001.
    [30] Y. C. Hung, F. S. Shyu, C. J. Lin, and Y. S. Lai, “New voltage balance technique for capacitors of symmetrical half-bridge converter with current mode control,” IEEE Power Electronics and Drive Systems, vol. 1, pp. 365-369, Nov. 2003.
    [31] C. K. Min, O. W. Sik, L. K. Wook, and M. G. Woo, “A new half bridge converter for the personal computer power supply,” IEEE Power Electronics Specialists Conference, pp. 986-991, Jun. 2008.
    [32] M. Pahlevaninezhad, P. Das, J. Drobnik, P. K. Jain, and A. Bakhshai, “A novel ZVZCS full-bridge DC-DC converter used for electric vehicles,” IEEE Transaction on Power Electronics, vol. 27, no. 6, Jun. 2012.
    [33] C. W. Lee and C. S. Leu, “A novel soft-switching full-bridge converter, ” IEEE Power Electronics and Drive Systems, pp. 993-996, Nov. 2009.
    [34] T. J. Liang, J. H. Lee, S. M. Chen, J. F. Chen and L. S. Yang, “Novel isolated high-step-up DC–DC converter with voltage lift, ” IEEE Transaction on Industrial Electronics, pp. 1, Nov. 2011.
    [35] W. Li, W. Li and X. He, “Zero-voltage transition interleaved high step-up converter with built-in transformer, ” IET Power Electronics, vol. 4, Iss. 5, pp. 523–531, May 2011.
    [36] Y. Jang and M. M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Transaction on Power Electronics, vol. 19, pp. 169-175, Jan. 2004.
    [37] K. B. Park, H. W. Seong, H. S. Kim, G. W. Moon and M. J. Youn, “Integrated boost-sepic converter for high step-up applications,” in Proc. IEEE Power Electronics Specialists Conference, pp. 944–950, Jun. 2008.

    下載圖示 校內:2015-08-29公開
    校外:2017-08-29公開
    QR CODE