簡易檢索 / 詳目顯示

研究生: 鄒世雍
Tsou, Shih-yung
論文名稱: 以電紡絲法製備尼龍奈米纖維及其微結構鑑定
Preparation of Nylon nanofibers via electrospinning and microstructure characterization
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 181
中文關鍵詞: 電紡絲尼龍 6
外文關鍵詞: electrospinning, Nylon 6
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗探討不同甲酸水溶液為溶劑、不同電紡溫度及入carbon nanocapsule (CNC)與針狀黏土(clay)與不同Nylon分子量等變因,對於電紡Nylon溶液製程中,溶液性質、纖維形態、Nylon分子鏈順向度、結晶度等影響。由電子顯微鏡觀察知 : 使用甲酸濃度愈低的水溶液為溶劑所製備的尼龍纖維愈細,且電紡製程中Taylor cone愈長,jet愈短以及纖維內晶型由轉為。而提高電紡溫度會使纖維由圓柱狀變為彩帶狀,且愈高的溫度會導致Taylor cone愈長,jet愈短以及纖維內晶型由轉為的現象。CNC的混會使得纖維變細,並且隨著CNC量愈大所需要的操作電壓也愈大,晶型也由轉變為。clay的入會使得纖維變細,但會形成聚集並造成beaded纖維的出現。在相同濃度下,電紡分子量較低的Nylon溶液會形成較細的纖維,但使纖維變為smooth時,所需的濃度也相對較高。

    Our research is to study the correlation between solution properties, fiber morphologies, chain orientation and crystallinity in the electrospinning process of Nylon solutions using different solvents、temperatures and blend with carbon nanocapsule (CNC) and clay. Scanning electron microscope images showed that low degree purity of formic acid leads to the development of a longer Taylor cone, a shorter jet, thinner fibers and change of fiber crystalline from the  to the  form. When electrospinning was performed at a higher temperature, the Taylor cone was larger, the jet length was shorter and the fiber crystalline was changed from the  to the  form. Solution blends with CNC lead to the development of thinner fibers and the variation of fiber crystalline from  to  form. Solution blends with clay lead to the development of thinner fibers, but clay will aggregate to form the beaded fibers. For the same solution concentration, Nylon with a lower molecule weight leads to the development of thinner fiber, but the concentration require to develop the smooth fibers by electrospinning is higher.

    摘要 ………………………………………………………………… i Abstract ………………………………………………………………… ii 致謝 ………………………………………………………………… iii 目錄 ………………………………………………………………… iv 表目錄 ………………………………………………………………… viii 圖目錄 ………………………………………………………………… x 一、 前言………………………………………………………………. 1 二、 簡介………………………………………………………………. 2 2.1 電紡絲簡介…………………………………………………. 2 2.1.1電紡絲之模式(modes of electrospinning)…………….. 2 2.1.2電紡絲實驗之流程……………………………………. 3 2.1.3 cone和jet之形態…………………………………….. 4 2.1.4 jet甩動之過程………………………………………… 4 2.1.5纖維之形態……………………………………………. 4 三、 文獻回顧…………………………………………………………. 9 3.1 聚醯胺六(polyamide-6 or Nylon 6)簡介……………….. 9 3.1.1 Nylon 6的介紹……………………………………….. 9 3.1.2 Nylon 6的性質……………………………………….. 9 3.1.3 Nylon 6相關之電紡絲……………………………….. 10 3.2 電紡絲過程…………………………………………………. 12 四、 理論………………………………………………………………. 36 4.1 聚電解質現象(polyelectrolyte)介紹……………………….. 36 4.2 聚電解質溶液本質黏度(intrinsic viscosity)及分子量的量測………………………………………………………… 37 4.3 纖維內分子鏈之順向度(orientation)…………………… 38 4.4 相變化………………………………………………………. 39 五、 實驗………………………………………………………………. 46 5.1 實驗藥品……………………………………………………. 46 5.2 實驗材料及儀器……………………………………………. 47 5.2.1量測溶液性質之儀器………………………………… 47 5.2.2室溫電紡絲儀器及材料……………………………… 48 5.2.3量測儀器……………………………………………… 49 5.3 溶液的製備…………………………………………………. 51 5.3.1尼龍6溶液製備……………………………………… 51 5.3.1.1未混………………………………………... 51 5.3.1.2 CNC及clay混……………………………. 51 5.3.2黏度實驗…………………………………………….... 52 5.3.3導電度實驗…………………………………………… 52 5.3.4表面張力實驗………………………………………… 53 5.3.5室溫電紡絲實驗步驟………………………………… 54 5.3.6 WAXD實驗步驟……………………………………... 55 5.3.7 FT-IR實驗步驟…..…………………………………... 55 5.3.8 DSC實驗步驟…..……………………………………. 55 5.3.9室溫電紡絲實驗流程圖……………………………… 56 六、 結果與討論………………………………………………………. 57 6.1 不同溶劑系統對電紡製程的影響………………………… 57 6.1.1溶液性質…………………………………………..….. 57 6.1.1.1 Nylon-S/FA/H2O溶液的黏度……………….. 57 6.1.1.2 Nylon-S/FA/H2O溶液的導電度…………….. 58 6.1.1.3 Nylon-S/FA/H2O溶液的表面張力………….. 58 6.1.1.4 Nylon-S/FA/H2O三成份相圖……………….. 59 6.1.2穩定操作電壓的範圍(functioning domain) ….……… 59 6.1.3不同溶劑系統對電紡製程中cone、jet的影響….…… 59 6.1.4以高速攝影機拍攝纖維甩動情形….………………... 60 6.1.5不同溶劑系統對電紡纖維的影響…………………… 60 6.1.5.1纖維形態……………………………….…….. 60 6.1.5.2纖維分子鏈順向度…………………………... 62 6.1.5.3 WAXD分析………………………………….. 62 6.1.5.4 DSC與TGA分析…………………………… 63 6.1.5.5 ATR分析…………………………………….. 65 6.1.5.6纖維膜經hot stage熱處理之WAXD分析..... 66 6.2 不同電紡溫度對電紡製程的影響…………………………. 67 6.2.1不同電紡溫度對電紡製程中cone、jet的影響.……… 67 6.2.2不同電紡溫度對電紡纖維的影響…………………… 67 6.2.2.1纖維形態……….…………………………….. 67 6.2.2.2纖維分子鏈順向度………….……………….. 69 6.2.2.3 WAXD分析………………………………….. 69 6.2.2.4 DSC分析…………………………………….. 70 6.2.2.5 ATR分析…………………………………….. 70 6.3 電紡溶液中添加不同量的CNC對電紡製程的影響……... 72 6.3.1溶液性質……….……………………………………... 72 6.3.1.1 Nylon-S/CNC/FA/H2O溶液的導電度………. 72 6.3.1.2 Nylon-S/CNC/FA/H2O溶液的黏度…………. 72 6.3.2穩定操作電壓的範圍(functioning domain) ………… 74 6.3.3不同溶劑系統對電紡製程中cone、jet的影響…….… 74 6.3.4不同CNC含量對電紡纖維的影響………….………. 74 6.3.4.1纖維形態………………….………………….. 74 6.3.4.2纖維分子鏈順向度…………….…………….. 75 6.3.4.3 WAXD分析………………………………….. 75 6.3.4.4 DSC分析…………………………………….. 76 6.3.4.5 ATR分析…………………………………….. 76 6.4 不同分子量之Nylon溶液性質比較與混clay對電紡製程的影響……………………………………………………. 77 6.4.1溶液性質……………..……………………………….. 77 6.4.1.1 Nylon-S/FA/H2O溶液的黏度……………….. 77 6.4.1.2 Nylon-S/FA/H2O溶液的導電度…………….. 78 6.4.1.3 Nylon-S/FA/H2O溶液的表面張力………….. 78 6.4.2 穩定操作電壓的範圍(functioning domain) ………… 78 6.4.3 比較有無Clay混於10、15 wt% Nylon-U溶液對電紡纖維的影響……………………………………... 79 6.4.3.1纖維形態………….………………………….. 79 6.4.3.2 WAXD分析………………………………….. 80 6.4.3.3 DSC分析…………………………………….. 81 七、 結論………………………………………………………………. 158 八、 參考文獻…………………………………………………………. 159 九、 自述………………………………………………………………. 163

    [1] K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W. Choi, "Mechanical behavior of electrospun fiber mats of poly (vinyl chloride)/polyurethane polyblends",Journal of Polymer Science Part B: Polymer Physics,41, 1256 (2003)
    [2] L. Li, L. M. Bellan, H. G. Craighead, and M. W. Frey, "Formation and properties of nylon-6 and nylon-6/montmorillonite composite nanofibers",Polymer,47, 6208 (2006)
    [3] S. Dasgupta, W. B. Hammond, and W. A. Goddard, "Crystal structures and properties of nylon polymers from theory",Journal of the American Chemical Society,118, 12291 (1996)
    [4] Y. Liu, L. Cui, F. Guan, Y. Gao, N. E. Hedin, L. Zhu, and H. Fong, "Crystalline morphology and polymorphic phase transitions in electrospun Nylon 6 nanofibers",Macromolecules,40, 6283 (2007)
    [5] Y. Liand W. A. Goddard, "Nylon 6 crystal structures, folds, and lamellae from theory",Macromolecules,35, 8440 (2002)
    [6] C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, "Electrospun polymer nanofibres with small diameters", Nanotechnology,17, 1558 (2006)
    [7] K. H. Lee, K. W. Kim, A. Pesapane, H. Y. Kim, and J. F. Rabolt, "Polarized FT-IR study of macroscopically oriented electrospun Nylon-6 nanofibers",Macromolecules,41, 1494 (2008)
    [8] Y. Li, Z. Huang, and Y. L, "Electrospinning of nylon-6, 66, 1010 terpolymer",European Polymer Journal,42, 1696 (2006)
    [9] J. S. Stephens, D. B. Chase, and J. F. Rabolt, "Effect of the electrospinning process on polymer crystallization chain conformation in nylon-6 and nylon-12",Macromolecules,37, 877 (2004)
    [10] M. B. Bazbouzand G. K. Stylios, "Alignment and optimization of nylon 6 nanofibers by electrospinning",Journal of Applied Polymer Science,107 , 3023(2008)
    [11] S. Koombhongse, W. Liu, and D. H. Reneker, "Flat polymer ribbons and other shapes by electrospinning",Journal of Polymer Science Part B: Polymer Physics,39, 2598 (2001)
    [12] J. Zeleny, "Journal of Phys. Rev,3, 69 (1914)
    [13] A. Formhals, "US patent No. 1975504 (1934)
    [14] D. H. Renekerand, I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning",Nanotechnology,7, 216 (1996)
    [15] H. Fong, I. Chun, and D. H. Reneker, "Beaded nanofibers formed during electrospinning",Polymer-London,40, 4585 (1999)
    [16] G. Taylor, "Disintegration of water drops in an electric field",Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 383 (1964)
    [17] M. Cloupeauand, B. Prunet-Foch, "Electrostatic spraying of liquids in cone-jet mode",Journal of Electrostatics,22, 135 (1989)
    [18] J. Doshi, University of Akon, ph.D. Dissertation (1997)
    [19] H. Xu, D. Galehouse, and D. H. Reneker, "Study of the relationship between jet diameter and interference color during electrospinning",Polymer Materials: Science & Engineering,88, 37 (2003)
    [20] Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, "Experimental characterization of electrospinning: the electrically forced jet and instabilities",Polymer,42, 9955 (2001)
    [21] P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers",Journal of Colloid Interface Science,36, 71 (1971)
    [22] A. L. Yarin, S. Koombhongse, and D. H. Reneker, "Bending instability in electrospinning of nanofibers",Journal of Applied Physics,89, 3018 (2001)
    [23] J. R. Schaefgenand, C. F. Trivisonno, "Polyelectrolyte behavior of polyamides. I. viscosities of solutions of linear polyamides in formic acid and in sulfuric acid1",Journal of the American Chemical Society,73, 4580 (1951)
    [24] P. R. Saunders, "Dilute solution properties of polyamides in formic acid. Part II. The influence of ionic strength",Journal of Polymer Science,57, 131 (1962)
    [25] L. Ghimici, F. Popescu, "Determination of intrinsic viscosity for some cationic polyelectrolytes by Fedors method",European Polymer Journal,34, 13 (1998)
    [26] J. R. Schaefgenand C. F. Trivisonno, "Polyelectrolyte behavior of polyamides. II. viscosities of solutions of linear and multichain polyamides in formic acid1",Journal of the American Chemical Society,74, 2715 (1952)
    [27] S. R. Samanta, W. W. Lanier, R. W. Miller, and M. E. Gibson, "Fiber structure study by polarized infrared attenuated total reflection ppectroscopy: orientation development of Nylon 66 at various ppinning speeds",Applied Spectroscopy,44, 1137 (1990)
    [28] G. M. Kim, G. H. Michler, F. Ania, and F. J. B. Calleja, "Temperature dependence of polymorphism in electrospun nanofibres of PA6 and PA6/clay nanocomposite",Polymer,48, 4814 (2007)
    [29] Y. P. Khanna, "Overview of transition phenomenon in Nylon 6",Macromolecules,25, 3298 (1992)
    [30] Y. Kojima, T. Matsuoka, H. Takahashi, and T. Kurauchi, "Crystallization of nylon 6-clay hybrid by annealing under elevated pressure",Journal of Applied Polymer Science,51, 683 (1994)
    [31] S. S. Nairand C. Ramesh, "Studies on the crystallization behavior of nylon-6 in the presence of layered silicates using variable temperature WAXS and FTIR",Macromolecules,38, 454 (2005)

    無法下載圖示 校內:2014-08-04公開
    校外:2029-08-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE