簡易檢索 / 詳目顯示

研究生: 李耿漢
Lee, Keng-Han
論文名稱: 旋轉電機之局部放電訊號量測與智能分析
Rotating Electrical Machines Partial Discharge Signal Measurement and Intelligent Analysis
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 86
中文關鍵詞: 馬達缺陷檢測多感測器局部放電局部放電圖譜分析
外文關鍵詞: Rotating Electrical Machine, Multi-sensor, Partial Discharge, Partial Discharge Patterns Analysis
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工業領域中,旋轉電機的應用十分普遍,而因人為因素或設備老化導致的局部放電現象可能會導致電力設備故障,因此局部放電檢測對於保障電力設備的品質至關重要。本論文同時以高頻電流感測器(HFCT)、超高頻感測器(UHF)與暫態對地電壓感測器(TEV),量測在業界已運轉多年的旋轉電機之局部放電訊號。以三種感測器擷取的原始訊號會經由類比帶通濾波器(Band-pass Filter)與小波閾值降噪法(Wavelet Threshold)將雜訊濾除,留下局部放電訊號,並利用快速傅立葉轉換分析局部放電訊號的頻率分佈範圍。接著,將擷取到的訊號之相位與振幅繪製出局部放電圖譜,可藉由局部放電圖譜觀察局部放電訊號發生之相位與次數。最後從局部放電圖譜中提取出放電特徵,並搭配旋轉電機近期的電氣絕緣數據,將此雙重特徵輸入至雙流神經網路(Dual-stream Neural Network)模型後,推斷出旋轉電機絕緣系統的健康程度指數。綜合上述方法,可提高電力設備的可靠性和安全性,給予檢測人員一個判斷電力設備是否需下線維修的參考依據。

    Rotating electrical machines are crucial in various industries. Detecting partial discharge (PD) is essential to ensure the quality and reliability of power equipment, as it helps prevent potential failures caused by human factors or equipment aging. In this thesis, High-Frequency Current Transformers (HFCT), Ultra High-Frequency (UHF) sensors, and Transient Earth Voltage (TEV) sensors were used to capture PD signals in rotating electrical machines that have been operational for several years.
     The signals collected by the three sensors are first processed using band-pass filters and then denoised using the wavelet threshold denoising method to remove any noise, leaving only the PD signals. The frequency distribution of these signals is then analyzed using Fast Fourier Transform (FFT). The phase and amplitude of the collected PD signals are utilized to create PD patterns, enabling the observation of the phase and frequency of the PD occurrences. These patterns are used to extract discharge characteristics, which are then combined with the most recent electrical insulation index from electrical rotating machines.
     These combined features are input into a dual-stream neural network model to determine the health index of the insulation system. Integrating these methods enhances the reliability and safety of power equipment, providing maintenance personnel with a reference for deciding whether the electrical equipment needs offline maintenance.

    摘 要 I Extended Abstract II 誌謝 XIV 目錄 XV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-3 研究動機與目的 4 1-4 論文大綱 5 第二章 旋轉電機檢測原理與方法 6 2-1 旋轉電機故障瑕疵檢測方法 6 2-1-1故障瑕疵形成原因 6 2-1-2故障瑕疵種類 7 2-2 線上局部放電檢測法 8 2-2-1局部放電檢測故障瑕疵類型 8 2-2-2局部放電檢測原理與方法 11 2-3 離線電氣絕緣檢測法 13 第三章 研究方法與系統架構 15 3-1局部放電圖譜分析法 15 3-1-1訊號之正規化 15 3-1-2相位解析局部放電圖譜 16 3-1-3脈衝時序相位分析圖譜 17 3-2 方向梯度直方圖 18 3-3 電氣絕緣指標分析 23 3-4 系統架構 24 3-4-1 硬體架構 25 3-4-2 軟體架構 28 3-5 資料融合 31 3-6 雙流神經網路模型架構 33 第四章 實驗設計與訊號分析結果 35 4-1 旋轉電機與感測器位置 36 4-1-1 旋轉電機簡介 36 4-1-2 實驗設備佈署 37 4-2 旋轉電機局部放電訊號分析 38 4-2-1 高頻電流感測器 38 4-2-2 超高頻感測器 41 4-2-3 暫態對地電壓感測器 44 4-3 方向梯度直方圖特徵 47 4-4神經網路判讀結果 49 4-4-1 僅使用離線電氣絕緣數據之判讀結果 50 4-4-2 使用雙重特徵之綜合判讀結果 51 4-5 實驗結果討論 56 第五章 結論與未來展望 57 5-1 結論 57 5-2 未來展望 58 參考文獻 59

    [1] G. C. Stone, M. K. W. Stranges and D. G. Dunn, "Common Questions on Partial Discharge Testing: A Review of Recent Developments in IEEE and IEC Standards for Offline and Online Testing of Motor and Generator Stator Windings," IEEE Industry Applications Magazine, vol. 22, no. 1, pp. 14-19, Jan.-Feb. 2016.
    [2] G. Paoletti and A. Golubev, "Partial Discharge Theory and Applications to Electrical Systems," Conference Record of 1999 Annual Pulp and Paper Industry Technical Conference (Cat. No.99CH36338), Seattle, WA, USA, 1999, pp. 124-138.
    [3] D. H. Seo, J. H. Jeon, Y. H. Kim, "A Novel Sensing Method of Fault in Moving Machine," Mechanical Systems and Signal Processing, vol. 45, no. 1, pp. 154-169, 2014/03/03/ 2014. https://doi.org/10.1016/j.ymssp.2013.10.022.
    [4] C. J. Dister and R. Schiferl, "Using Temperature, Voltage, and/or Speed Measurements to Improve Trending of Induction Motor RMS Currents in Process Control and Diagnostics," Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), St. Louis, MO, USA, 1998, pp.312-318 vol.1.
    [5] M. S. Yilmaz and E. Ayaz, "Adaptive Neuro-fuzzy Inference System for Bearing Fault Detection in Induction Motors Using Temperature, Current, Vibration data," IEEE EUROCON 2009, St. Petersburg, Russia, 2009, pp. 1140-1145
    [6] F. Alvarez, F. Garnacho, J. Ortego and M. A. Sánchez-Urán, "Application of HFCT and UHF Sensors in On-Line Partial Discharge Measurements for Insulation Diagnosis of High Voltage Equipment", Sensors, vol. 15, no. 4, pp. 7360-7387, Mar. 2015.
    [7] G. C. Stone, H. G. Sedding and M. J. Costello, "Application of Partial Discharge Testing to Motor and Generator Stator Winding Maintenance," IEEE Transactions on Industry Applications, vol. 32, no. 2, pp. 459-464, March-April 1996.
    [8] S. M. Tetrault, G. C. Stone and H. G. Sedding, "Monitoring Partial Discharges on 4-kV Motor Windings," IEEE Transactions on Industry Applications, vol. 35, no. 3, pp. 682-688, May-June 1999.
    [9] R. Bartnikas and J. P. Novak, "On the Character of Different Forms of Partial Discharge and Their Related Terminologies," IEEE Transactions on Electrical Insulation, vol. 28, no. 6, pp. 956-968, Dec. 1993, doi: 10.1109/14.249369.
    [10] C. Zhou, I. J. Kemp and M. Allaa, "The PD Pulse Behaviour in Rotating Machine Stator Windings," Proceedings of 1995 Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, USA, 1995, pp. 372-375.
    [11] S. Song, Y. Qian, H. Wang, Y. Zang, G. Sheng, and X. Jiang, "Partial Discharge Pattern Recognition Based on 3D Graphs of Phase Resolved Pulse Sequence," Energies, vol. 13, no. 15, pp. 1–16, Aug. 2020.
    [12] K. Kudelina, T. Vaimann, B. Asad, A. Rassõlkin, A. Kallaste, and G. Demidova, "Trends and Challenges in Intelligent Condition Monitoring of Electrical Machines Using Machine Learning," Applied Sciences, vol.11, no. 6, p.2761, Mar.2021.
    [13] M. Florkowski, "Classification of Partial Discharge Images Using Deep Convolutional Neural Networks," Energies, vol. 13, no. 20, p. 5496, Oct.2020.
    [14] T.-D. Do, V. -N. Tuyet-Doan, Y.-S. Cho, J.-H. Sun and Y.-H. Kim, "Convolutional-Neural-Network-Based Partial Discharge Diagnosis for Power Transformer Using UHF Sensor," IEEE Access, vol. 8, pp. 207377-207388, 2020.
    [15] M. Rahman, T. Azam and S. K. Saha, "Motor Fault Detection Using Vibration Patterns," International Conference on Electrical & Computer Engineering (ICECE 2010), Dhaka, Bangladesh, 2010, pp. 486-489.
    [16] J. J. Hopfield, "Artificial Neural Networks," IEEE Circuits and Devices Magazine, vol. 4, no. 5, pp. 3-10, Sept. 1988.
    [17] M.Y. Chow, P.M. Mangum, O.S. Yee, "A Neural Network Approach to Real-time Condition Monitoring of Induction Motors," IEEE Transactions on Industry Applications Society, Vol. 38, No. 6, pp. 448-453, Dec. 1991.
    [18] G. C. Stone, H. G. Sedding, C. Chan and C. Wendel, "Comparison of Low Frequency and High Frequency PD Measurements on Rotating Machine Stator Windings," 2018 IEEE Electrical Insulation Conference (EIC), San Antonio, TX, USA, pp. 349-352, 2018.
    [19] G. C. Stone and V. Warren, "Objective Methods to Interpret Partial-discharge Data on Rotating-machine Stator Windings," IEEE Transactions on Industry Applications, vol. 42, no. 1, pp. 195-200, Jan.-Feb. 2006.
    [20] G. C. Stone, "Partial Discharge Diagnostics and Electrical Equipment Insulation Condition Assessment," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 12, no. 5, pp. 891-904, Oct. 2005.
    [21] A. S. Guedes, S. M. Silva, B. d. J. Cardoso Filho, and C. A. Conceição, "Evaluation of Electrical Insulation in Three-phase Inductionmotors and Classification of Failures Using Neural Networks," Electric Power Systems Research, vol. 140, pp. 263–273, 2016.
    [22] P. J. Tavner, "Review of Condition Monitoring of Rotating Machines," IET Electric Power Applications, vol. 2, no. 4, pp. 215–247, 2008.
    [23] M. Florkowski, "Wavelet Denoising of Partial Discharge Images," Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials (Cat. No.00CH36347), Xi'an, China, 2000, pp. 459-462 vol.1.
    [24] Y. Wang, P. Chen, Y. Zhao, and Y. Sun, "A Denoising Method for Mining Cable PD Signal Based on Genetic Algorithm Optimization of VMD and Wavelet Threshold," Sensors, vol. 22, no. 23, p. 9386, 2022. doi: 10.3390/s22239386.
    [25] N. A. Yusoff et al., "Denoising Technique for Partial Discharge Signal : A Comparison Performance Between Artificial Neural Network, Fast Fourier Transform and Discrete Wavelet Transform," 2016 IEEE International Conference on Power and Energy (PECon), Melaka, Malaysia, 2016, pp. 311-316.
    [26] Z. Wang and C. S. Chang, "Online Fault Detection of Induction Motors Using Frequency Domain Independent Components Analysis," IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 2011, pp. 2132-2137.
    [27] IEEE Recommended Practice for Testing Insulation Resistance of Rotating Machinery, Electrical Machinery, Standard Std 43TM-2013, 2000, pp. 1-26.
    [28] J. Penman, H. G. Sedding, B. A. Lloyd and W. T. Fink, "Detection and Location of Interturn Short Circuits in the Stator Windings of Operating Motors," IEEE Transactions on Energy Conversion, vol. 9, no. 4, pp. 652-658, Dec. 1994.
    [29] J. Song, C. Li, L. Lin, Z. Lei, X. Bi and H. Yang, "Slot Discharge Pattern of 10 kV Induction Motor Stator Coils Under Condition of Insulation Degradation," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 6, pp. 2091-2098, December 2013.
    [30] R. P. Nair and S. B. Vishwanath, "A Novel Approach to Identify Slot Discharges in the Presence of End Winding Corona Discharges," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 26, no. 5, pp. 1385-1393, Oct. 2019
    [31] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 886-893 vol. 1.
    [32] Y. Zheng, "Methodologies for Cross-Domain Data Fusion: An Overview," IEEE Transactions on Big Data, vol. 1, no. 1, pp. 16-34, 1 March 2015.
    [33] R. J. Linn, D. L. Hall, and J. Llinas, "Survey of Multisensor Data Fusion Systems," vol. 1470: SPIE, pp. 13-29.
    [34] M. Mao, R. Zhang, H. Zheng, P. Gao, T. Ma, Y. Peng, E. Ding, B. Zhang, and S. Han. "Dual-stream Network for Visual Recognition," arXiv preprint arXiv:2105.14734, 2021.
    [35] Z. Zhang, H. Luo, C. Wang, C. Gan and Y. Xiang, "Automatic Modulation Classification Using CNN-LSTM Based Dual-Stream Structure," IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 13521-13531, Nov. 2020.
    [36] D. A. Nattrass, "Partial Discharge Measurement and Interpretation," IEEE Electrical Insulation Magazine, vol. 4, no. 3, pp. 10-23, May-June 1988.
    [37] S. Nandi, H. A. Toliyat and X. Li, "Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review," IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 719-729, Dec. 2005.
    [38] M. A. Al-Jarrah, M. A. Yaseen, A. Al-Dweik, O. A. Dobre and E. Alsusa, "Decision Fusion for IoT-Based Wireless Sensor Networks," IEEE Internet of Things Journal, vol. 7, no. 2, pp. 1313-1326, Feb. 2020.
    [39] N. Xu et al., "Dual-Stream Recurrent Neural Network for Video Captioning," IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 8, pp. 2482-2493, Aug. 2019.
    [40] H. Zhang, Y. Liao, H. Yang, G. Yang and L. Zhang, "A Local–Global Dual-Stream Network for Building Extraction From Very-High-Resolution Remote Sensing Images," IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 3, pp. 1269-1283, March 2022.
    [41] A. Nagisetty and G. P. Gupta, "Framework for Detection of Malicious Activities in IoT Networks using Keras Deep Learning Library," 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2019, pp. 633-637.

    無法下載圖示 校內:2029-08-07公開
    校外:2029-08-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE