| 研究生: |
黃文舜 Huang, Wen-Shuen |
|---|---|
| 論文名稱: |
曾文水庫集水區大埔水文站溪流挾砂量與流量關係之研究 Study on the Relation between Sediment Content and Flow Discharge at Dapu Hydrologic Station in the Watershed of Tseng Wen Reservoir |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 集水區 、懸移質 、颱風 |
| 外文關鍵詞: | Typhoon, suspended sediment, catchment |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區水庫淤積問題日趨嚴重,泥砂的來源主要因為颱風及暴雨期間,雨水沖蝕地表造成大量的泥砂流入水庫所導致。若能了解颱風及暴雨期間溪流挾帶泥砂含量的多寡,就可以提供水庫蓄水時機作業之參考,進而降低水庫淤積問題的產生。本文以曾文水庫上游大埔水文站為取樣及觀測地點,探討颱風及暴雨期間溪流流量、水位與挾砂量之關係。在流速量測方面,本文利用架設於河岸旁之攝影機所拍攝的水流影像,進行影像判讀分析,計算出不同時間的流速,作為後續分析之參考依據。泥砂的取樣過程,是以預先裝設好之浮球式取樣瓶進行取樣,將取樣瓶固定於水位記支架上,以25cm的間距,由河床往上架設,待颱風及暴雨過後再取下取樣瓶進行後續分析。文中以艾利颱風為應用對象,分析結果顯示,在相同水深下,以颱風期間所量測到的含砂量最高,颱風來臨前所量測的含砂量次之,颱風後期所量測到的含砂量最低。在水位及雨量隨時間變化的關係圖中顯示,含砂濃度的高低取決於當時河道的流況,在漲水期間溪流含砂濃度較高,退水期間溪流含砂濃度較低,因此在同一個水深下,可能會有漲水及退水兩種不同含砂濃度之關係曲線。為了提高溪流含砂量之量測精確性,本文亦研發一種由水深控制之自動化取樣器,目前已完成實驗室之測試,應具有現地溪流泥砂量測之能力。
The problem of reservoir sedimentation in Taiwan is getting serious day by day. The sediment origins mainly by rainfall flushing and eclipsing the land surface to create massive sediment and flow into reservoirs during typhoon and rainstorm events. If we can understand the sediment amount carried by brooks during typhoon and rainstorm events, we can get the important information for reservation operation and sediment prevention. In this paper, taking Dapu hydrologic station, in the upstream of Tseng Wen Reservoir, as the place to get samples and do researches, the relation between the flow discharge, water level and sediment capacity during typhoon and rainstorm events is discussed. In the aspect of flow speed, this paper uses the flow image which was photographed by the river bank to carry on the image analysis and calculates the flow speed at different time. The data is used the in the following analysis. In the process of taking the sediment sample, the ball-floating-type sample bottles are preset and fixed to the rack with water-level marks. By the 25cm spacing, the bottles are fixed upward the river bed. After the typhoon and rainstorm events, the bottles are taken down to carry on the following analysis. In this paper, typhoon Aere is taken as the application object. According to the analysis result, under the same water depth, the sediment density measured during the typhoon is the highest, before the typhoon is the next, and after the typhoon is the lowest. From the relational charts of the water level and the rainfall changes, the sediment density is decided by the flow discharge at that time. When water level swells, the density is higher; when the water is drawn back, the density is lower. Therefore, under the identical water depth, there are possibly two different relation curves of sediment density, water swelling and drawn back. In order to enhance the measurement accuracy in brook sediment density, this paper also develops an automatic sample-taker controlled by water depth. Now it has past the tests in the laboratory and could be used in measuring brook sediment.
1. Chen,C.L,1991,Power law of flow resistance in open channels Manning’s formula revisited, .in Yen, B. C., ed , Channel Flow Resistance Centennial of Manning’ formula, Water Resources Publications, Littleton,Colorado
2. Itakura, T.,and Kishi, T. , 1980, “Open channel flow with suspended sediments,” Journal of the Hydraulics Division, ASCE, Vol. 106, No. HY8, pp. 1325-1343.
3. Kazuhisa, A. C., 2002, “Characteristics of sediment discharge in the subaractic,” Yukon River, Alaska, Catena48, pp.235-253.
4. Lane, E. W., and Kalinske, A. A, 1941,“Engineering Calculations of Suspended Sediments,” Trans. AGU, Vol.22,
5. Meyer-Peter, E., Favre, H., and Einstein, A., 1934,“Neuere Versuchsresultate uber den Geschiebetrieb,”Schweiz Bauzeitung, Vol.10., No.13.
6. Rouse, H., 1937,“Modern conceptions of the mechanics of turbulence,”Trans. ASCE, Vol. 102, pp.463-543.
7. Shimizu, Y., Yamaguchi, H. and Itakura, T., 1990, “Three-dimensional computation of flow and bed deformation,” Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 9, pp. 1090-1108.
8. Shields, A., 1936,“Anwendung der Ahnlichkeitsmeckanik und Turbulenz Forchung auf die Geschiebebewegung,” Mitteilungender Preussischen Versuchsanstalt fur Wasser und Schiffbau, Berlin, Heft 26.
9. Subramanya, K. 1997, Flow in open channels Tata McGraw-Hill Book Co., New York, N.Y.
10. 鮑精一,1970,「輸砂公式在濁水溪適用性之研究」,碩士論文,私立文化大學實業計畫研究所,台北。
11. 黃朝恩,1982。台灣河川輸砂特性及其地形意義。師大學報,第27期,P649-680。
12. 陳長銘,1983,「台灣上游河道推移質輸砂量估算之研究」,碩士論文,國立中興大學水土保持研究所,台中。
13. 林俊輝,1983,「國姓水庫集水區泥砂產量推估之研究」,碩士論文,國立中興大學水土保持研究所,台中。
14. 王如意、易任,1988,。應用水文學(下冊),國立編譯館,台北市,P535。
15. 李樹遠,1988,「曾文水庫集水區之泥砂生產模式與防砂壩效益評估研究」,碩士論文,國立中興大學水土保持研究所,台中。
16. 錢寧、萬兆惠,1991,「泥砂運動力學」,第三版,科學出版社,新華書店,北京。
17. 林俊全,1994,“集水區之地質地形因子與土壤沖蝕之研究“,行政院農業委員會。
18. 林金炳,1996,「石門水庫集水區輸砂與水文河相關係之研究」,碩士論文,國立中興大學水土保持研究所,台中。
19. 邵顯涵,1996,「哈盆溪集水區泥砂生產之觀測」,碩士論文,國立台灣大學地理學系研究所,台北。
20. 鄭皆達,謝在郎,1997,“石門水庫集水區泥砂生產與水文特性之關係“,中華水土。
21. 陳樹群、沈學汶、何智武,1998,「土地利用對水庫淤砂之影響(三)」,經濟部水資源局研究報告,87EC2B370031,台北。
22. 林孟龍,1999,「颱風對於蘭陽溪上游集水區懸移質生產特性的影響」,碩士論文,國立台灣大學地理學研究所,台北。
23. 陳樹群、沈學汶、何智武,1999,「水庫合理之入流水質及泥砂評估方法(一)」,經濟部水資源局研究報告,台北。
24. 詹錢登,2000,土石流概論,科技圖書,P6。
25. 彭壽奇,2000,「集水區土砂生產量之估計研究」,碩士論文,國立交通大學土木工程研究所,新竹。
26. 林彥良,2001,「類神經網路應用於水庫集水區暴雨時期產砂量推估之研究」,碩士論文,國立台灣大學土木工程研究所,台北。
27. 陳彥圖,2002,「野溪暴雨泥砂輸送與退水回淤之試驗研究」,碩士論文,國立中興大學水土保持研究所,台中。
28. 陳孟威,2002,「類神經網路應用於石門水庫集水區暴雨產砂量推估之研究」,碩士論文,國立台灣大學土木工程研究所,台北。
29. 程勝璟,2003,「甲仙攔河堰懸移質輸運率研究」,碩士論文,國立屏東科技大學土木工程研究所,屏東。
30. 李正祐,2003,「不同流況下泥砂運動之沖淤試驗」,碩士論文,國立中興大學水土保持研究所,台中。