| 研究生: |
謝易儒 Hsieh, Yi-Ju |
|---|---|
| 論文名稱: |
考量磁飽和之高扭矩密度伺服馬達設計 Design of High Torque Density Servomotor by Considering Magnetic Saturation |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 共同指導教授: |
蔡明祺
Tsai, Mi-Ching 黃柏維 Huang, Po-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 對沖式內藏型永磁馬達 、鐵芯磁飽和 、每安培最大轉矩控制 |
| 外文關鍵詞: | spoke type interior permanent magnet motors, magnetic saturation, maximum torque per ampere |
| 相關次數: | 點閱:179 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
伺服馬達為達到高響應速度及高定位精準度之性能,須具備高轉矩密度之特性,且經常操作於數倍額定電流下,易造成馬達鐵芯磁飽和,進而影響馬達參數,使驅動控制產生誤差。基於上述背景,本研究採用對沖式磁鐵轉子設計,以提高伺服馬達轉矩密度。然而因為磁裝載的增加,更容易造成磁飽和現象。因此,本論文提出透過驅動控制與馬達整合模擬分析,以判斷馬達是否產生鐵芯磁飽和現象,並藉此回饋馬達設計,提升轉矩密度之特性。首先,在鐵芯未產生磁飽和之情況下,進行轉矩優化設計,以固定之鐵芯導磁係數,且根據不同磁束集中因數設計低漏磁之對沖式內藏型永磁馬達,再利用有限元素分析軟體確認轉矩性能,將結果代入每安培最大轉矩控制之電流激磁角度公式計算,根據計算結果判斷馬達鐵芯是否達到磁飽和,以進行磁束集中因數對轉矩密度之優化設計。本論文實驗將以一市售驅動器對優化後之馬達進行驅動,並確認其驅動控制特性是否符合模擬結果,驗證本研究提出方法之有效性。
In this paper, a novel method of designing high torque density permanent magnet synchronous motors is proposed. By increasing the flux concentration factor, the torque density of motors can be increased obviously, but it also leads to the magnetic saturation of the steel sheet. The magnetic saturation of the steel sheet is harmful to motor performance, so the design of motors should avoid this situation. It is important to check the magnetic saturation while increasing the flux concentration factor. The traditional method for checking the magnetic saturation used the simulation software to obtain the distribution of magnetic flux density. It cannot provide precise index for designers to find out the level of magnetic saturation. The novel method proposed by this paper can provide a precise index for people to check the magnetic saturation caused by increasing the flux concentration factor. This is achieved by computing the difference between angles of exciting currents based on maximum torque per ampere (MTPA). The results of experiments show that the torque density of the motor increases obviously. The feasibility of the novel method can thus be validated.
[1] H. Kagermann, W.D. Lukas and W. Wahlster, “Industrie 4.0: mit dem Internet der dinge auf dem Weg zur 4. industriellen revolution .” Apr. 1, 2011
[2] 資通電腦,「如何邁向工業 4.0 -實踐智慧工廠自動化生產」,Available: https://cimes.ares.com.tw/industry-4.0/
[3] 鄒應嶼,2004年11月22日,「伺服技術之發展」,Available: http://pemclab.cn.nctu.edu.tw
[4] 賴建欣,「內藏型永磁同步馬達磁固耦合分析與設計」,國立成功大學系統及船舶機電工程學系碩士論文,2017。
[5] D. Olivier, Electrodynamics from Ampère to Einstein, 1st ed. Oxford, England, Oxford University Press, 2000.
[6] A. Fatemi, D. M. Ionel, M. Popescu, Y. C. Chong and N. Demerdash, "Design optimization of a high torque density spoke-type PM motor for a race drive cycle," IEEE Trans. Ind. Appl. vol. 49, no. 1, pp. 591-598, 2013.
[7] B. K. Lee, G. H. Kang, J. Hur and D. W. You, "Design of spoke type BLDC motors with high power density for traction applications," in Proceedings of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., Seattle, WA, USA, 2004, pp. 1068-1074.
[8] K. Y. Hwang, J. H. Jo and B. I. Kwon, "A study on optimal pole design of spoke-type IPMSM with concentrated winding for reducing the torque ripple by experiment design method," IEEE Trans. Magn., vol. 45, no. 10, pp. 4712-4715, Oct. 2009.
[9] K. Xie, D. Li, R. Qu and D. Jiang, "Analysis and experimental comparison of spoke type and surface mounted PM machines with fractional slot concentrated winding," in Proceedings of 19th International Conference on Electrical Machines and Systems, Chiba, 2016, pp. 1-6.
[10] Y. Pang, Z. Q. Zhu and D. Howe, "Analytical determination of optimal split ratio for permanent magnet brushless motors," IEE Proceedings - Electric Power Applications, vol. 153, no. 1, pp. 7-13, Jan. 2006.
[11] Y. Shen and Z. Q. Zhu, "Analytical prediction of optimal split ratio for fractional-slot external rotor PM brushless machines," IEEE Trans. Magn., vol. 47, no. 10, pp. 4187-4190, Oct. 2011.
[12] X. Ge, Z. Q. Zhu, J. Li and J. Chen, "A spoke-type IPM machine with novel alternate airspace barriers and reduction of unipolar leakage flux by step-staggered rotor," in Proceedings of IEEE International Electric Machines & Drives Conference, Coeur d'Alene, ID, USA, 2015, pp. 4789-4797.
[13] J. P. Alexander, S. Galioto and A. M. El-Refaie, "First order mechanical sizing equations for the electromagnetic optimization of spoke IPM machines," in Proceedings of XXII International Conference on Electrical Machines, Lausanne, Switzerland, 2016, pp. 357-363.
[14] Y. Demir, O. Ocak and M. Aydin, "Design, optimization and manufacturing of a spoke type interior permanent magnet synchronous motor for low voltage-high current servo applications," in Proceedings of International Electric Machines & Drives Conference, Chicago, IL, USA, 2013, pp. 9-14.
[15] 陳俊霖,謝易儒「淺談交流馬達d-q軸轉換」,馬達中心電子報第750期 2017/07/19發行
[16] 劉昌煥,「交流電機控制」,東華書局,民國95年9月四版
[17] D. Y. Ohm, (2000, May 16). Dynamic Model of PM Synchronous Motors. Available: https://pdfs.semanticscholar.org/e2be/948549aaf744c73b36d303cf7165041222f4.pdf
[18] D. C. Hanselman, Brushless Permanent Magnet Motor Design, Midpoint Trade Books Inc, 2003
[19] 吳昇澤,「永磁同步馬達d-q軸電感量測原理推導與實測」,馬達中心電子報第781期 2018/02/28發行
[20] Q. Liu, “Analysis, design and control of permanent magnet synchronous motors for wide-speed operation,” Ph. D. dissertation, Dept. Elect. Eng., National University of Singapore, 2005. .
[21] T. M. Jahns, G. B. Kliman, and T. W. Neumann, “Interior permanent magnet synchronous motors for adjustable-speed drives,” IEEE Trans. Ind. Appl., vol. IA-22, no. 4, pp. 738-747, Jul. 1986.
[22] 台灣安川電機股份有限公司,「Σ-7 系列綜合型錄」,2018/5/10發行
[23] 多摩川精機株式會社,”AC Servo Motors(TBL-ilVs Series) Catalog”,2018/4/10發行
[24] Asea Brown Boveri,”E-Series Servo Motors Catalog”,2016發行
[25] SIEMENS AG,”SIMOTICS S-1FK7 Servomotors Catalog”,2013發行
[26] N. K. Endla and K. Ragavan, "Analysis on demagnetization characteristics of spoke configured interior permanent magnet rotors," in Proceedings of IEEE International Conference on Power Electronics, Drives and Energy Systems, Mumbai, India, 2014, pp. 1-4.
[27] G. H. Kang, J. Hur, H. G. Sung and J. P. Hong, "Optimal design of spoke type BLDC motor considering irreversible demagnetization of permanent magnet," in Proceedings of Sixth International Conference on Electrical Machines and Systems, Beijing, China, 2003, pp. 234-237.
[28] K. Y. Hwang, S. B. Rhee, J. S. Lee and B. I. Kwon, "Shape optimization of rotor pole in spoke type permanent magnet motor for reducing partial demagnetization effect and cogging torque," in Proceedings of International Conference on Electrical Machines and Systems, Seoul, 2007, pp. 955-960.
[29] 何冠德,「內藏式永磁馬達轉矩成份分析方法」,馬達中心電子報第773期 2017/12/27發行
[30] 陳桂村,「IPMSM全區間(MTPA&FW)速度操作特性分析」,勢流科技,2016/7/15
[31] 張晉瑋,「應用磁電耦合分析之內藏式永磁同步馬達弱磁控制」,國立成功大學系統及船舶機電工程學系碩士論文,2017。
[32] B. Stumberger, G. Stumberger, D. Dolinar, A. Hamler and M. Trlep, “Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 9, no. 5, Sept. 2003.
[33] M. Wu, H. Kubota, Y. Shibano and S. Maekawa, “ Position-sensorless control method for permanent magnet synchronous motor using speed observer and induced voltage caused by magnetic saturation,” in Proceedings of IEEE 12th International Conference on Power Electronics and Drive Systems, Honolulu, HI, USA, 2017.
[34] C. Mademlis and V.G. Agelidis, “On considering magnetic saturation with maximum torque to current control in interior permanent magnet synchronous motor drives,” IEEE Trans. Energy Convers., vol. 16, no. 3, Sep 2001.
[35] Z. Li and H. Li, "MTPA control of PMSM system considering saturation and cross-coupling," in Proceedings of 15th International Conference on Electrical Machines and Systems, Sapporo, 2012, pp. 1-5.
[36] S. Kim, Y. D. Yoon, S. K. Sul and K. Ide, "Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation," IEEE Trans. Power Electron. , vol. 28, no. 1, pp. 488-497, Jan. 2013.
[37] G. Wang, Z. Li, G. Zhang, Y. Yu and D. Xu (2013). "Quadrature PLL-based high-order sliding-mode observer for IPMSM sensorless control with online MTPA control strategy." IEEE Trans. Energy Convers., vol 28, no. 1, pp. 214 – 224, 2013.
校內:2023-09-01公開