| 研究生: |
張御萱 Chang, Yu-Hsuan |
|---|---|
| 論文名稱: |
台灣太陽能板廢棄量與回收機制探討 End of Life Management: Solar Photovoltaic Panels in Taiwan |
| 指導教授: |
陳家榮
Chen, Chia-Yon 吳榮華 Wu, Rong-Hwa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 太陽能板廢棄量 、可靠度 、韋伯分配 、回收機制 、物質流分析 |
| 外文關鍵詞: | Photovoltaic Panels, Reliability, Weibull Distribution, Recycling Mechanism, Material Flow Analysis |
| 相關次數: | 點閱:227 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於大量使用化石燃料導致氣候變遷,近年全球能源部門均致力於轉向低碳能源,其中太陽能已蔚為各國大力推廣的再生能源。考量到2017年電業法通過新法案推動「綠電先行」,太陽能市場需求量勢必遽增,未來若無法有效地解決為數可觀的廢太陽能板,基於廢棄物中含有部分有毒物質,將對環境造成嚴重的衝擊。
隨著環保意識提高,使得各國太陽能產業面臨嚴峻的環境責任壓力,各國除了建立相關環保法規,更是積極研發矽晶與薄膜太陽能板回收技術。目前歐盟已有自發性的回收機構PV Cycle 進行回收處理,台灣目前並沒有建構相關的回收處理機制,未來若能夠翻轉過去末端管理的思維,納入循環經濟的概念,將太陽能板廢棄物轉換為資源再生的材料,此不僅能為靜脈產業創造獲利,更能有效舒緩太陽能產業的環境壓力,取得環境與經濟間雙贏的局面。
本研究以可靠度結合物質流分析法之預測模型,探討國內太陽能板廢棄物產生的嚴重性。考量到產品壽命失效分配、技術提升等修正因子,模擬三階段情境分別為:基準情境、FIT制度影響及提早退役影響等情境,並以綜合情境計算出2000~2050年之太陽能板廢棄量,針對有害物質對環境的衝擊影響、儲備稀有元素的重要性,以及再生物料帶來的回收產值,探究其經濟效益和環境成本等綜合性問題,最後加以論述台灣太陽能板廢棄物之回收策略。
研究結果顯示,情境一考量到太陽能板正常退役之實際情況,自2050年廢棄量出現轉折點其數量約為88,000公噸,最後廢棄量將趨於恆定約為50,000公噸。情境二考量到躉購費率保證收購20年電力,自2040年將產生最多太陽能板廢棄量約為191,438公噸,隨著FIT制度的影響,年滿20年的太陽能板將會自動形成淘汰機制。情境三考量到電力市場自由化後,未來躉購制度將可能退出市場,自2035年出現最大量的太陽能板廢棄物約為195,513公噸,未來太陽能板可能在國內提早退役,並在第三世界國家延長其使用壽命,國內進而發展更高效能的太陽能板。
綜觀綜合情境結果,得知2020年太陽能板累積廢棄量將達2,658~2,670公噸,2030年累積廢棄量將達24,389~31,337公噸,2040年累積廢棄量將達184,279~714,655公噸,2050年累積廢棄量將達865,190~1,488,498公噸。鑒於太陽能板中有毒物質將造成環境與人體健康危害,其毒性將逐年累積,本研究範疇僅針對鉛、鎘兩元素計算其環境成本,真正的環境成本將超過本研究計算之數值,若不妥善處理,2020年至少需花費23,637,714~23,714,919元的環境成本,2025年至少需花費83,308,128~83,810,605元的環境成本,2030年至少需要花費180,371,209~280,663,113元的環境成本,因此應儘早將太陽能板廢棄物進行回收再生處理,相對緩解國內太陽能產業稀有元素不足之問題。至於台灣太陽能板廢棄量中資源化產值,結果預估2020年為53,095,740 ~53,561,434元,2025年為182,576,993 ~184,606,067元,2030年為460,672,165 ~610,787,012元。
本研究建議政府透過「環保署基管會」協助規範製造商負起相關責任且建立「徵收回收處理費」的機制,誘導整個市場朝向易回收的方向發展,其中太陽能板回收運作模式,若為私人住宅用戶統一交由環保署的縣市政府清潔隊進行回收處理;而系統商則直接交由工業局進行回收,並建立「綠色電子標籤」或是「模組序號」來確認製造商之責任歸屬。然而,國內迄今並無具體的太陽能板退場機制,建議國內太陽能產業遵循循環經濟的角度改善回收管理策略,而政府應積極擬定相關法令和配套措施,此將有助於產業朝向零廢棄的願景以及活絡再生資源的利用,以促進動脈與靜脈產業間共生共榮。
Due to the massive use of fossil fuels for climate change, the global energy sector has been turning to low-carbon energy sources in recent years. At present, solar energy has become a renewable energy source promoted by various countries. In 2017, if a large number of waste photovoltaic panels can’t be effectively solved, the waste will contain some toxic substances, which will have a serious impact on the environment.
This study combines reliability with a predictive model of material flow analysis . Exploring the seriousness of domestic photovoltaic panel waste generation, which considers the correction factors such as product life failure distribution and technology improvement. Three scenarios were simulated, respectively the baseline scenario, the FIT scenario and the early retirement scenario. The amount of photovoltaic panels Discovered from 2000 to 2050 was calculated in an integrated scenario. In response to the impact of harmful substances on the environment, the importance of storing rare elements, and the recovery value of recycled materials, explore the comprehensive issues of economic benefits and environmental costs, and finally discuss the recycling strategy of photovoltaic panels in Taiwan.
With the increasing awareness of environmental protection, the solar industry in various countries is facing severe environmental responsibility pressure. In addition to establishing relevant environmental regulations, each country is actively researching and developing photovoltaic panel recycling technology. However, there is currently no specific mechanism for photovoltaic panel recycling in Taiwan. It is recommended that the domestic solar industry follow the perspective of the circular economy to improve the recycling management strategy. The government should actively draft relevant laws and supporting measures, which will help the industry to face the vision of zero waste.
一、中文文獻
(一)期刊
1. 王孟傑(2009),化合物薄膜太陽能產業現況,工業材料雜誌,第268期,頁64-70。
2. 黃文星、付建勛及林偉凱(2011),台灣金屬資源再生技術的現況與展望,科學發展月刊,第457期,頁92-96。
(二)學術論文
3. 林昇志(2005),量子點的組裝及其在染料敏化太陽能電池的應用,國立成功大學化學工程學系碩士論文。
4. 張雅雯(2008),太陽能電池之材料及製程知識庫系統,國立成功大學材料科學及工程學系碩士論文。
5. 廖原篁(2009),台灣地區太陽能電池與太陽能板流佈與管理之研究,國立台北科技大學環境工程與管理研究所碩士論文。
6. 廖仕麒(2012),太陽能光電與熱回收混合系統之效益評估,國立成功大學系統及船舶機電工程學系碩士論文。
7. 顏哲揚(2013),生命週期永續性評估之應用研究─以太陽能產品為例,國立台北科技大學環境工程與管理研究所碩士論文。
8. 吳貴淳(2006),太陽能電池的材料回收處理與再利用研究,國立交通大學精密與自動化工程學程碩士論文。
9. 黃健源(2010),陽光電城太陽能利用之生命週期評估,國立台北大學自然環境與環境管理研究所碩士論文。
10. 陳玠宏(2012),技術性貿易障礙?歐盟環保指令對我國電子產業的影響,南華大學歐洲研究所碩士論文。
(三)書籍與報告
11. 丁俊元及陳秋楊(2008),固體廢棄物管理,東南科大出版。
12. 小西正暉、鈴木竜宏及蒲谷昌生(2014),一讀就懂!太陽能發電系統詳解,馥林文化出版社。
13. 中國國家能源局(2016),可再生能源發展十三五規畫綱要。
14. 何孟穎、康志堅及張蕎韻(2010),2010~2012年全球太陽光電市場商機探索,經濟部技術處出版。
15. 林福銘(2017),太陽光電產業概況,工研院綠能與環境研究所太陽光電技術組出版。
16. 施勵行(2002),資源再生與永續性社會,俊傑出版社。
17. 財團法人中技社(2012),永續資源管理政策白皮書,專題報告:2012-06。
18. 財團法人中技社(2013),臺灣稀有資源循環發展策略,專題報告:2013-06。
19. 財團法人中技社(2015),太陽光電技術發展趨勢探討,專題報告:2015-02。
20. 財團法人中技社(2015),循環經濟的發展趨勢與關鍵議題,專題報告:2015-06。
21. 財團法人中技社(2017),推升循環經濟價值之關鍵議題,專題報告:2017-04。
22. 張乃斌(2001),固體廢棄物處理,三民出版社。
23. 張嘉玲及陳明義(2009),綠色產業發展趨勢,科學與工程技術期刊,第5(1),11-17。
24. 楊昌裔(2007),可靠度工程 = Reliability engineering,新文京出版社。
25. 楊善國(2005),可靠度工程概論,全華圖書公司出版。
26. 經濟部能源局(2016),2016年能源產業技術白皮書。
27. 經濟部能源局(2016),2016年統計年報。
28. 經濟部能源局(2017),電業法條文修正草案。
29. 經濟部能源局(2018),2018年4月能源統計月報。
30. 董瑞青(2013),碲化鎘薄膜太陽能電池產業發展現況,科學出版社。
31. 謝志強(2011),中國大陸新興能源產業特輯,工業技術研究院產業經濟與趨勢研究中心出版。
二、英文文獻
1. Anctil, A., & Fthenakis, V. (2013), Critical metals in strategic photovoltaic technologies: abundance versus recyclability. Progress in Photovoltaics: Research and Applications, 21(6), 1253-1259.
2. Andersson, B. A., Azar, C., Holmberg, J., & Karlsson, S. (1998), Material constraints for thin-film solar cells. Energy, 23(5), 407-411.
3. Bertram, M., Graedel, T. E., Rechberger, H., & Spatari, S. (2002), The contemporary European copper cycle: waste management subsystem. Ecological Economics, 42(1-2), 43-57.
4. BIO (2011), Study on photovoltaic panels supplementing the impact assessment for a recast of the WEEE directive.Final Report, ENV.
5. Buchert, M., Schüler, D., Bleher, D., & Programme des Nations Unies pour l'environnement. (2009),Critical metals for future sustainable technologies and their recycling potential. UNEP DTIE; Öko-Institut.
6. Choi, J. K., & Fthenakis, V. (2014), Crystalline silicon photovoltaic recycling planning: macro and micro perspectives. Journal of Cleaner Production, 66, 443-449.
7. Contreras-Lisperguer, R., Muñoz-Cerón, E., Aguilera, J., & de la Casa, J. (2017), Cradle-to-cradle approach in the life cycle of silicon solar photovoltaic panels. Journal of Cleaner Production, 168, 51-59.
8. Corcelli, F., Ripa, M., Leccisi, E., Cigolotti, V., Fiandra, V., Graditi, G., & Ulgiati, S. (2016), Sustainable urban electricity supply chain–Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life. Ecological Indicators, In press, corrected proof, Available online 5 April 2016.
9. Cucchiella, F., & Rosa, P. (2015), End-of-Life of used photovoltaic modules: A financial analysis. Renewable and Sustainable Energy Reviews,47, 552-561.
10. Cucchiella, F., D’Adamo, I., Koh, S. L., & Rosa, P. (2015), Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews,51, 263-272.
11. Cyrs, W. D., Avens, H. J., Capshaw, Z. A., Kingsbury, R. A., Sahmel, J., & Tvermoes, B. E. (2014), Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels. Energy Policy, 68, 524-533.
12. Dattilo, M. (2011), CI (G) S PV modules: recycling technology status. Paper presented at the 2nd International Conference on PV Module Recycling.
13. Davis, J., Geyer, R., Ley, J., He, J., Clift, R., Kwan, A., ... & Jackson, T. (2007), Time-dependent material flow analysis of iron and steel in the UK: Part 2. Scrap generation and recycling. Resources, conservation and recycling, 51(1), 118-140.
14. Dias, P., Javimczik, S., Benevit, M., & Veit, H. (2017), Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Management, 60, 716-722.
15. Dias, P., Javimczik, S., Benevit, M., Veit, H., & Bernardes, A. M. (2016), Recycling WEEE: extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste management, 57, 220-225.
16. Doi, T., Tsuda, I., Unagida, H., Murata, A., Sakuta, K., & Kurokawa, K. (2001), Experimental study on PV module recycling with organic solvent method. Solar Energy Materials and Solar Cells, 67(1), 397-403.
17. Domínguez, A., & Geyer, R. (2017), Photovoltaic waste assessment in Mexico. Resources, Conservation and Recycling, 127, 29-41.
18. Dubey, S., Jadhav, N. Y., & Zakirova, B. (2013), Socio-economic and environmental impacts of silicon based photovoltaic (PV) technologies. Energy Procedia, 33, 322-334.
19. Durlinger, B., Reinders, A., & Toxopeus, M. (2012), A comparative life cycle analysis of low power PV lighting products for rural areas in South East Asia. Renewable energy, 41, 96-104.
20. Evans, A., Strezov, V., & Evans, T. J. (2009), Assessment of sustainability indicators for renewable energy technologies. Renewable and sustainable energy reviews, 13(5), 1082-1088.
21. Finkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010), Towards life cycle sustainability assessment. Sustainability, 2(10), 3309-3322.
22. Finnveden, G., & Moberg, Å. (2005), Environmental systems analysis tools–an overview. Journal of cleaner production, 13(12), 1165-1173.
23. Fthenakis, V. (2001), Regulations on photovoltaic module disposal and recycling. (No. BNL--68142; EB2201000), Brookhaven National Lab., Upton, NY (US).
24. Fthenakis, V. M. (2000), End-of-life management and recycling of PV modules. Energy Policy,28(14), 1051-1058.
25. Fthenakis, V. M., & Wang, W. (2006), Extraction and separation of Cd and Te from cadmium telluride photovoltaic manufacturing scrap. Progress in Photovoltaics: Research and Applications,14(4), 363-371.
26. BINE (2009),Recycling Photovoltaic Modules. BINE Information Service Energy Expertise, Berlin, Germany.
27. Gerbinet, S., Belboom, S., & Léonard, A. (2014), Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews, 38, 747-753.
28. Giacchetta, G., Leporini, M., & Marchetti, B. (2013), Evaluation of the environmental benefits of new high value process for the management of the end of life of thin film photovoltaic modules. Journal of Cleaner Production, 51, 214-224.
29. Goozner, R. E., Drinkard, W., Long, M., & Byrd, C. (1997), A process to recycle thin film PV materials. Paper presented at the Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE.
30. Graedel, T. E. (2011), On the future availability of the energy metals. Annual Review of Materials Research, 41, 323-335.
31. Granata, G., Pagnanelli, F., Moscardini, E., Havlik, T., & Toro, L. (2014), Recycling of photovoltaic panels by physical operations. Solar Energy Materials and Solar Cells, 123, 239-248.
32. Held, M., & Ilg, R. (2011), Update of environmental indicators and energy payback time of CdTe PV systems in Europe. Progress in photovoltaics: research and applications, 19(5), 614-626.
33. Huang, W. H., Shin, W. J., Wang, L., Sun, W. C., & Tao, M. (2017), Strategy and technology to recycle wafer-silicon solar modules. Solar Energy, 144, 22-31.
34. Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Schileo, G., Mustapha, K. B., & Greenough, R. (2017), Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 80, 1321-1344.
35. IEA. (2004), Renewable Energy Market & Policy Trends in IEA Countries.
36. IEA. (2014), Technology Roadmap: Solar Photovoltaic Energy.
37. IEA. (2015), Energy Technology Perspectives 2015.
38. ISE. (2017), PHOTOVOLTAICS REPORT
39. Wambach, K., Schlenker, S., Konrad, B., Muller, A., Von, D., & Ramin-Marro (2009), PV Cycle –the voluntary take back system and industrial recycling of PV modules,24th European Photovoltaic Solar Energy Conference, 21–25 September, Hamburg, Germany.
Wambach, K., Schlenker, S., Springer, J., Konrad, B., Sander, K., Despotou, E., & Stryi-Hipp, G.
40. Kang, S., Yoo, S., Lee, J., Boo, B., & Ryu, H. (2012), Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renewable Energy, 47, 152-159.
41. Katsigiannis, Y., Katsamaki, A., Rentoumis, M., Koulouridakis, P., Athanailidis, I., & Bilalis, N. (2015), Evaluation of photovoltaic recycling methods using environmental indicators. Solar cells, 3, 1-5.
42. Kuitche, J. M. (2010), Statistical lifetime predictions for PV modules. Arizona State University &TUV Rheinland PTL Arizona.
43. Kumar, A., Holuszko, M., & Espinosa, D. (2017), E-waste: an overview on generation, collection, legislation and recycling practices. Resources, Conservation and Recycling, 122, 32-42.
44. Kumar, S., & Sarkan, B. (2013), Design for reliability with weibull analysis for photovoltaic modules. International Journal of Current Engineering and Technology, 3(1), 129-134.
45. Lanzano, T., Bertram, M., De Palo, M., Wagner, C., Zyla, K., & Graedel, T. E. (2006), The contemporary European silver cycle. Resources, Conservation and Recycling, 46(1), 27-43.
46. Laronde, R., Charki, A., Bigaud, D., & Excoffier, P. (2010, August), Photovoltaic system lifetime prediction using Petri networks method. In Reliability of Photovoltaic Cells, Modules, Components, and Systems III (Vol. 7773, p. 777306), International Society for Optics and Photonics.
47. Latunussa, C. E., Ardente, F., Blengini, G. A., & Mancini, L. (2016), Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101-111.
48. Mah, O. (1998), Fundamentals of photovoltaic materials. National Solar Power Research Institute, 1-10.
49. Marshall, R. E., & Farahbakhsh, K. (2013), Systems approaches to integrated solid waste management in developing countries. Waste Management, 33(4), 988-1003.
50. Marwede, M., & Reller, A. (2012), Future recycling flows of tellurium from cadmium telluride photovoltaic waste. Resources, Conservation and Recycling, 69, 35-49.
51. Marwede, M., Berger, W., Schlummer, M., Maurer, A., & Reller, A. (2013), Recycling paths for thin-film chalcogenide photovoltaic waste – Current feasible processes. Renewable Energy, 55, 220-229.
52. McDonald, N. C., & Pearce, J. M. (2010), Producer responsibility and recycling solar photovoltaic modules. Energy Policy, 38(11), 7041-7047.
53. Paiano, A. (2015), Photovoltaic waste assessment in Italy. Renewable and Sustainable Energy Reviews, 41, 99-112.
54. Palitzsch, W., & Loser, U. (2013), Systematic photovoltaic waste recycling. Green, 3(1), 79-82.
55. Parajuly, K., Habib, K., & Liu, G. (2017), Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management. Resources, Conservation and Recycling, 123, 85-92.
56. Park, J. A., Hong, S. J., Kim, I., Lee, J. Y., & Hur, T. (2011), Dynamic material flow analysis of steel resources in Korea. Resources, Conservation and Recycling, 55(4), 456-462.
57. Peeters, J. R., Altamirano, D., Dewulf, W., & Duflou, J. R. (2017), Forecasting the composition of emerging waste streams with sensitivity analysis: A case study for photovoltaic (PV) panels in Flanders. Resources, Conservation and Recycling, 120, 14-26.
58. Petridis, N. E., Stiakakis, E., Petridis, K., & Dey, P. (2016), Estimation of computer waste quantities using forecasting techniques. Journal of Cleaner Production, 112, 3072-3085.
59. Quansah, D. A., Adaramola, M. S., Takyi, G., & Edwin, I. A. (2017), Reliability and degradation of solar PV modules—Case study of 19-year-old polycrystalline modules in Ghana. Technologies, 5(2), 22.
60. Quaschning, V. (2004), Technical and economical system comparison of photovoltaic and concentrating solar thermal power systems depending on annual global irradiation. SolarEnergy, 77, 171–178.
61. Redlinger, M., Eggert, R., & Woodhouse, M. (2015), Evaluating the availability of gallium, indium, and tellurium from recycled photovoltaic modules. Solar Energy Materials and Solar Cells, 138, 58-71.
62. REN21 (2017), Renewables 2017 Global Status Report.
63. Rocchetti, L., & Beolchini, F. (2015), Recovery of valuable materials from end-of-life thin-film photovoltaic panels: environmental impact assessment of different management options. Journal of Cleaner Production, 89, 59-64.
64. Salhofer, S., Steuer, B., Ramusch, R., & Beigl, P. (2016), WEEE management in Europe and China–a comparison. Waste management, 57, 27-35.
65. Seager, T. P., & Theis, T. L. (2002), A uniform definition and quantitative basis for industrial ecology. Journal of Cleaner Production, 10(3), 225-235.
66. Sener, C., & Fthenakis, V. (2014), Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs. Renewable and Sustainable Energy Reviews, 32, 854-868.
67. Shin, J., Park, J., & Park, N. (2017), A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Solar Energy Materials and Solar Cells, 162, 1-6.
68. Sica, D., Malandrino, O., Supino, S., Testa, M., & Lucchetti, M. C. (2018), Management of end-of-life photovoltaic panels as a step towards a circular economy. Renewable and Sustainable Energy Reviews.
69. Srinivasan, S., & Kottam, V. K. R. (2018), Solar photovoltaic module production: Environmental footprint, management horizons and investor goodwill. Renewable and Sustainable Energy Reviews, 81, 874-882.
70. Streicher-Porte, M., Widmer, R., Jain, A., Bader, H. P., Scheidegger, R., & Kytzia, S. (2005), Key drivers of the e-waste recycling system: Assessing and modelling e-waste processing in the informal sector in Delhi. Environmental impact assessment review, 25(5), 472-491.
71. SunPower (2013), 40 Year Useful Life. SunPower white paper, Feb 2013. Useful life is, 99.
72. Tammaro, M., Rimauro, J., Fiandra, V., & Salluzzo, A. (2015), Thermal treatment of waste photovoltaic module for recovery and recycling: experimental assessment of the presence of metals in the gas emissions and in the ashes. Renewable Energy, 81, 103-112.
73. Tao, J., & Yu, S. (2015), Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells, 141, 108-124.
74. Tasaki, T., Takasuga, T., Osako, M., & Sakai, S. I. (2004), Substance flow analysis of brominated flame retardants and related compounds in waste TV sets in Japan. Waste Management, 24(6), 571-580.
75. Vellini, M., Gambini, M., & Prattella, V. (2017), Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels. Energy, 138, 1099-1111.
76. Wambach, K., Schlenker, S., & Jäger-Waldau, A. (2005), A voluntary take back system for PV modules in Europe. In 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain.
77. Weckend, S., Wade, A., & Heath, G. (2016), End-of-Life Management: Solar Photovoltaic Panels , 1-100.
78. White, P., Dranke, M., & Hindle, P. (2012), Integrated solid waste management: a lifecycle inventory. Springer Science & Business Media.
79. Xu, Y., Li, J., Tan, Q., Peters, A. L., & Yang, C. (2018), Global status of recycling waste solar panels: A review. Waste Management.
80. Yi, Y. K., Kim, H. S., Tran, T., Hong, S. K., & Kim, M. J. (2014), Recovering valuable metals from recycled photovoltaic modules. Journal of the Air & Waste Management Association, 64(7), 797-807.
81. Zimmermann, T. (2013), Dynamic material flow analysis of critical metals embodied in thin-film photovoltaic cells. Univ., Forschungszentrum Nachhaltigkeit.
三、網站資訊
1. 6R環保政策網站 http://recycle.epb.taichung.gov.tw/recying/recying_16.asp
2. LME 倫敦金屬交易所 https://www.lme.com/
3. PV Cycle 網站 www.pvcycle.org/
4. 二級材料價格指標 http://ec.europa.eu/eurostat/statistics-explained/index.php/Recycling_%E2%80%93_secondary_material_price_indicator
5. 上海金屬市場網站 https://price.metal.com/
6. 日本太陽能回收示範工程執行委員會 www.jpvcollection.jp/inquiry/privacypolicy.html
7. 日本經濟產業省自然資源和能源局 www.enecho.meti.go.jp/
8. 加利福尼亞危險廢物處置法規網站 http://www.dtsc.ca.gov/LawsRegsPolicies/index.cfm
9. 台灣電力公司網站 https://www.taipower.com.tw/
10. 弗勞恩霍夫太陽能系統研究中心(Fraunhofer ISE) https://www.ise.fraunhofer.de/
11. 有害物質限制指令-維基百科
https://zh.wikipedia.org/wiki/危害性物質限制指令
12. 能源信息管理局(EIA)網站-月報 https://www.eia.gov/totalenergy/data/monthly/
13. 國家環境毒物研究中心 http://nehrc.nhri.org.tw/toxic/toxfaq.php
14. 國際化學品政策宣導網 https://www.chemexp.org.tw/content/law/CountryLawList.aspx
15. 產品生態化設計 -台灣產業服務基金會網站 https://www.ftis.org.tw/project-in.aspx?id=63
16. 陽光屋頂百萬座計畫網站 www.mrpv.org.tw/
17. 綠色貿易資訊網-國際法規規範 https://www.greentrade.org.tw/zh-hant/request/criterion
18. 廢電子電機設備指令- 維基百科
https://zh.wikipedia.org/wiki/廢電子電機設備指令
校內:2020-12-31公開