| 研究生: |
陳永錚 Chen, Yung-Chen |
|---|---|
| 論文名稱: |
使用無機緩衝材料改善有機發光二極體之光電特性研究 The investigations on the optical and electrical characteristics of the OLEDs using an inorganic buffer material |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 金屬氧化物 、有機發光二極體 、緩衝層 |
| 外文關鍵詞: | Metal oxide, Buffer layer, OLED |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於金屬氧化物可扮演緩衝層及電洞注入層之角色,改善有機材料與ITO電極表面附著不平整之問題,並使得電洞注入效能提升,讓更多的電洞、電子能夠在有機發光層內產生再結合放光現象,進而達到元件低驅動電壓與高放光效率等優點。因此本研究嘗試將鋰、鎂金屬離子摻雜於氧化鋅粉末中,並使用此材料來製作無機緩衝層之有機發光二極體元件,探討金屬離子的摻入如何改善元件效率。
本論文主要分為兩大部分,第一部份為研究ZnO薄膜依不同Li、Mg參雜物濃度、膜厚對元件的影響。第二部分為探討以真空熱蒸鍍的方式,所製成單層金屬氧化物結構、光電特性,並輔助說明電荷載子在元件中如何注入、傳輸等機制。
由實驗結果發現:鋰金屬離子的摻雜,可增加氧化鋅薄膜的功函數;選用金屬氧化物緩衝層功函數接近NPB材料的HOMO值的材料,可有效改善電洞注入效率與降低元件驅動電壓。
Metal oxide films play the role of the buffer-layer and hole-injection layer, and improve the interface roughness problem between organic materials and ITO electrode. They also increase the hole-injection efficiency for more hole-electron to recombine and emit photon in the organic emission layer, and achieve the goals for making OLEDs devices with low driving voltage and high power efficiency. In this study, we try to deposit ZnO:Li、Mg films by thermal evaporation method as the inorganic buffer layer in OLEDs devices, and also investigate the mechanism how the Li、Mg doped ZnO buffer layers can be used for improving the device efficiency.
In the first phase of this research, we deposited Li、Mg doped ZnO films with different concentration and thickness as the buffer layer to investigate the characteristics of the OLEDs. We also studied the mechanism for those devices and measured the structures and the optical-electrical characteristics of those metal oxide films.
In this study, we found that doping Li metal in the ZnO powder can increase the work function of ZnO films. As we chose the materials that their work functions closed to the HOMO of NPB, they could be used for improving the hole-injection efficiency and lowering the driving voltage.
[1] G. Destriau, J. Chem. Phys., 33, p.587 (1936)
[2] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 38, p.2024 (1963)
[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, p.539 (1990)
[4] Y. Ohmore, and K. YoShino, Jap. J. Appl. Phys. 30, p.1938 (1991)
[5] Y. Ohmore, and K. YoShino, Jap. J. Appl. Phys. 30, p.1941 (1991)
[6] C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 57, p.531 (1990)
[7] S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, p.2160 (1996)
[8] C.O. Poon, and F. L. Wong, Appl. Phys. Lett., 83, p.1038 (2003)
[9] Chengfeng Qiu, and Zhilang Xie, J. Appl. Phys. 93, p.3253 (2003)
[10] Soo Young Kim, Jeong Min Baik, and Hak Ki Yu, Appl. Phys. Lett. 87, p.072105 (1990)
[11] M. A. Baldo, D. F. O `Brien, Y. You, A.Shoustikov, Nature, 395, p.151 (1998)
[12] A. L. Burin, M. A. Ratner, J. Chem. Phys., 104, p.4704 (2000)
[13] C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Jap. J. Appl. Phys. 2, L713 (1988)
[14] M. Era, C. Adachi, T. Tsutsui and S. Saito, Chem. Phys. Lett., 178, p.488 (1936)
[15] J. Kido, M. Kohda, K. Okuyama, K. Nagai, Appl. Phys. Lett. 61, p.761 (1992)
[16] D. A. Neamen, Semiconductor Physics & Devices, 2nd Ed., p.319.
[17] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
[18] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor-Contacts (Clarendon, Oxford, 1988).
[19] A. J. Champbell and D. D. C. Bradley, J. Appl. Phys., 86, p.5004 (1999).
[20] I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov,and J. P. Ferraris, Appl. Phys. Lett., 72, p.1863 (1998).
[21] P. S. Davids, I. H. Campell, and D. L. Smith, J. Appl. Phys., 82, p.6319 (1997).
[22] Y. Yang and A. J. Heeger, Appl. Phys. Lett., 64, p.1245 (1994).
[23] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, J. Appl. Phys., 77, p.694 (1995).
[24] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys., 79, p.7991 (1996).
[25] S. Karg, M. Meier, and W. Riess, J. Appl. Phys., 82, p.1951 (1997).
[26] A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys., 82, p.6326 (1997).
[27] N. F. Mott and R. W. Gurney, Electronic Process in Ionic Crystals (Dover Publication, New York, 1940).
[28] W. Helfrich, Physics and Chemistry of the Organic Solid State 3, 1 (1967).
[29] M. A. Lambert and P. Marks, Current Injection in Solids (Academic, New York, 1970).
[30] H. C. F. Martens, J. N. Huiberts, and P.W. M. Blom, Appl. Phys. Lett., 77, p.1852 (2000).
[31] P. W. M. Blom and M. C. J. M. Vissenberg, Mat. Sci. & Eng., 27, p.53 (2000).
[32] P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth. Met., 121, p.1621 (2001).
[33] I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl. Phys. Lett., 74, p.2809 (1999).
[34] J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G. Mallianras, S. A. Carter, and L. Bozano, Synth. Met., 111-112, p.289 (2000).
[35] L.S. Hung, L. R. Zheng, and M. G. Mason, Appl. Phys. Lett., 78, p.679 (2001).
[36] Y. Qiu, Y. Gao, L. Wang, and D. Zhang, Synth Met., 130, p.235 (2002)
[37] Z. B. Deng, X. M. Ding, S. T. Lee, W. A. Gambling, Appl. Phys. Lett., 74, p.2222 (1999).
[38] J.M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, Appl. Phys. Lett., 84, p.2913 (2003).
[39] Bhattacharya, P., Park, K. and Nishioka, Y., Jap. J. Appl. Phys. 33, p.4103-4106 (1994)
[40] Korb, E. D. and laudise, R. A., J. Am. Ceram. Soc., 49, p.302-305 (1966)
[41] Shinobu Fujihara, Chikako Sasaki and Toshio Kimura, J. European Ceramic Society, 21, p.2109-2112 (2001)
[42] Soo Young Kim and Jong-Lam Leem, J. Appl. Phys., 95, p.2560 (2004).
[43] Jingsong Huang, Martin Pfeiffer, Ansgar Werner, Jan Blochwitz, and Karl Leo, Appl. Phys. Lett., 80, p.139 (2002).
[44] 顧鴻壽著,光電有機電激發光顯示器,新文京開發出版社,台北,中華民國93年2月20日
[45] 陳金鑫,OLED:有機電激發光材料與元件,五南出版社,新竹,中華民國94年9月5日