簡易檢索 / 詳目顯示

研究生: 楊弘吉
Yang, Hung-Chi
論文名稱: 渦電流非破壞性檢測系統之設計及應用
The Design and Applications of Eddy-Current Nondestructive Inspection System
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 82
中文關鍵詞: 非破壞性檢測脈衝式渦電流掃頻式渦電流金屬表面裂縫疲勞性裂縫塗層測定
外文關鍵詞: swept-frequency eddy-current, metal surface crack, fatigue crack, coating determination, nondestructive testing, pulsed eddy-current
相關次數: 點閱:111下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 渦電流檢測是應用於非破壞性檢測的一項主要技術,惟國內的研究者參與渦電流檢測技術的開發並不多,而且在台灣商用的渦電流檢測儀器缺乏又昂貴。因此,為了往後的研究發展,首先我們根據渦電流理論設計開發了一套以電腦控制的脈衝式渦電流檢測儀器。這個脈衝式渦電流檢測儀器可用來檢測金屬中的裂縫和隱藏性腐蝕,也可使用於量測塗層特性與厚度,另外3D顯像功能可顯示待測物受損情形。

    在非破壞性檢測的應用中,渦電流探頭的性能是值得重視的。我們探討當探頭線圈與待測體在檢測情形下相互作用時,渦電流探頭以頻域阻抗與時域電流所表現出的靈敏度。理論上,若探頭線圈的材料特性與形狀結構決定後,則測量非瑕疵材料與待測材料之間的線圈阻抗差或電流差即可由電磁理論的計算解得。我們設計了三組不同形狀的探頭來評估其靈敏度,以及二組實際的探頭用來驗證理論預測。我們透過掃頻式渦電流與脈衝式渦電流訊號有系統地研究這些渦電流探頭的靈敏度。

    另一項主題是金屬裂縫檢測。本文中我們使用自行發展的脈衝式渦電流檢測儀器來檢測0.5 mm 到9 mm深的金屬表面裂縫,並且比較了使用不同裂縫深度、探頭形式和待測材料所量測的結果。這些實驗結果包含了對EDM凹槽與疲勞性裂縫的檢測,並且發現脈衝式渦電流峰值訊號與裂縫深度有極為密切的關聯,很明顯地,脈衝式渦電流是一項可量化測量裂縫深度的方法。

    使用脈衝式渦電流技術測定金屬基材上塗層的導電率與厚度是一項新的發展技術,其中金屬基材或塗層具導磁性。在這項主題中我們以銅基材上的鎳塗層(25 – 200 mm)、鎳基材上的銅塗層(25 – 200 mm)和鋼基材上的鋅塗層(50 – 400 mm)來說明這項技術。脈衝式渦電流檢測儀器紀錄所有電流差的測量,並且比對實際測量值與理論值來測定金屬上塗層的導電率與厚度,我們也進一步討論脈衝式渦電流與金屬塗層間的物理現象。

    The eddy current is one of the main techniques that used frequently for nondestructive testing applications. Unfortunately, very few domestic researchers in Taiwan are involved in the study of the eddy-current techniques. Moreover, the commercial instruments for the eddy-current testing is not only deficient but also high-priced. In this research, we have designed and built a PC-based pulsed eddy-current (PEC) system. The PEC instrument has the ability to detect defects such as cracks and hidden corrosions in metals. Other applications of the PEC instrument include coating measurement and thickness inspection. In addition, the 3D image can be used to display the situation of defects in specimen.

    The characterization of the eddy-current probes is an important issue for nondestructive testing applications. In the thesis, we study the sensitivity of eddy-current probes based on the frequency-domain impedance and the time-domain current when the coil is interacting with a specimen under testing. In theory, once the properties of the material and the geometry of the structure are determined, the electrical impedance change of the coil or the current difference can be calculated from the electromagnetic solutions. We designed three sets of different size probes to evaluate the sensitivity. Other two sets of practical probes were used to verify the theoretical predictions. The sensitivity of eddy current probes is systematically studied through the signals of the swept-frequency eddy current and the pulsed-eddy current techniques.

    Another important subject is the crack sizing. In the thesis, the PC-based PEC testing system was also used for crack detection. For the cases studied, we show that the PEC technique can be used to inspect surface cracks with depth ranging from 0.5 mm to 9 mm. A comparison of measurement results for various combinations of crack depths, probes, and materials is presented. Experimental results including measurements from electrical-discharge-machined (EDM) notches and fatigue cracks are demonstrated and compared. We show that there is a strong relationship between the peak PEC signal amplitudes and crack depths. It is evident that the PEC technique is a potential method for quantitative determination of the depth of surface cracks.

    A new measurement method has been developed using the pulsed eddy-current technique to determine the thickness or conductivity of metallic coatings on metal substrate for the case when either the coating or substrate is magnetic. We demonstrate this technique for nickel layers (25 – 200 mm) over copper substrates, copper layers (25 – 200 mm) over nickel substrates and zinc layers (50 – 400 mm) over magnetic steel substrates. All current difference measurements were recorded with the PEC instrument. The determination of coating thickness or conductivity of the metals is based on the comparison of the data taken with air-core coils and theoretical calculation using closed-form solutions. The physical phenomena of the PECs interactions with the coated magnetic metals are discussed.

    Abstract (Chinese) ---------------------------------------- I Abstract (English) ---------------------------------------- III Acknowledgment (Chinese)----------------------------------- VI Contents -------------------------------------------------- VII List of Figures ------------------------------------------- X List of Tables -------------------------------------------- XIV Chapter 1. Introduction ----------------------------------- 1 1.1. The characterization of eddy-current probes ---------- 2 1.2. PEC testing of cracks on a metal plate --------------- 3 1.3. Conducting coating determination on a metal plate ---- 4 Chapter 2. System Design ----------------------------------- 6 2.1. The principles of eddy current ------------------------ 6 2.2. The hardware of the PEC system ------------------------ 8 2.2.1. The control circuit board --------------------------- 9 2.2.2. Analog to digital converter ------------------------- 14 2.2.3. Eddy-current probes --------------------------------- 14 2.3. The software of the PEC system ------------------------ 15 2.4. Measurement method ------------------------------------ 26 Chapter 3. Methods ----------------------------------------- 29 3.1. Theoretical background -------------------------------- 29 3.1.1. Swept-frequency eddy current ------------------------ 29 3.1.2. Pulsed eddy current --------------------------------- 33 3.2. Simulation program ------------------------------------ 35 3.3. Experimental setup for PEC testing of cracks on a metal plate ------------------------------------------------------- 38 3.4. Experimental method for conducting coating determination on a metal plate ------------------------------------------------------- 39 Chapter 4. Experimental Results ---------------------------- 42 4.1. The characterization of the eddy-current probes ------- 42 4.1.1. The number of turns and the inner radius remain unchanged ----------------------------------------------------- 42 4.1.2. Inner and outer radii remain unchanged --------------- 43 4.1.3. Inner radius and coil height remain unchanged -------- 43 4.1.4. Inner radius and coil height remain unchanged: practical cases in the PEC method -------------------------------------------------- 45 4.2. PEC testing of cracks on a metal plate ----------------- 46 4.2.1. EDM notches ------------------------------------------ 47 4.2.2. Fatigue cracks --------------------------------------- 48 4.2.3. A comparison of measurement on various materials ----- 50 4.2.4. Resolution and location ------------------------------ 50 4.2.5. Cracks on nuts --------------------------------------- 52 4.3. Conducting coating determination on a metal plate ------ 53 Chapter 5. Discussion --------------------------------------- 57 5.1. The characterization of the eddy-current probes -------- 57 5.2. PEC testing of cracks on a metal plate ----------------- 60 5.3. Conducting coating determination on a metal plate ------ 64 Chapter 6. Conclusions and Future Development --------------- 67 6.1. Conclusions -------------------------------------------- 67 6.2. Future development ------------------------------------- 69 References -------------------------------------------------- 72 Appendix A. The correction procedure for coating application - 75 Appendix B. The size of the probes -------------------------- 77 Appendix C. The photographs of the PEC system --------------- 79 Vita -------------------------------------------------------- 82

    [1] C.V. Dodd, W. E. Deeds, “Analytical Solutions to Eddy-Current Probe-Coil Problems,” Journal of Applied Physics, 39, pp. 2829–2838, 1986.
    [2] C. C. Cheng, C. V. Dodd, W. E. Deeds, “General Analysis of Probe Coils Near Stratified Conductors,” International Journal of Nondestructive Testing, 3, pp. 109–130, 1971.
    [3] J. C. Moulder, E. Uzal, and J. H. Rose, “Thickness and conductivity of metallic layers from eddy current measurements,” Rev. Sci. Instrum., vol. 63, pp. 3455–3465, 1992.
    [4] A. Sethuraman, J. H. Rose, “Rapid inversion of eddy current data for conductivity and thickness of metal coatings,” J. Nondestr. Eval., vol. 14, pp. 39–46, 1995.
    [5] C. C. Tai, J. H. Rose, and J. C. Moulder, “Thickness and conductivity of metallic layers from pulsed eddy current measurements,” Rev. Sci. Instrum., vol. 67, pp. 3965–3972, 1996.
    [6] C. C. Tai, J. H. Rose, and J. C. Moulder “Characterization of Coatings on Magnetic Metals Using Swept-Frequency Eddy Current and Transient Eddy Current Methods,” Review of Progress in QNDE, 16, eds. D. O. Thompson and D. E. Chimenti (Plenum, New York) 1593–1600, 1997.
    [7] C. C. Tai, “Characterization of coatings on magnetic metal using the swept-frequency eddy current method,” Rev. Sci. Instrum., vol. 71, pp. 3161–3167, 2000.
    [8] B. de Halleux, A. Ptchelintsev, and B. de Limburg Stirum, “Thickness and conductivity determination of thin coatings on ferromagnetic substrates in the case of cylindrical symmetry,” Rev. Sci. Instrum. 68(9) pp. 3533–3539, 1997.
    [9] A. Ptchelintsev and B. de Halleux, “Thickness and conductivity determination of thin coatings on ferromagnetic conductive substrates using surface coils,” Rev. Sci. Instrum., 69(3) pp. 1488–1494, 1998.
    [10] J. C. Moulder, M. W. Kubovich, E. Uzal, and J. H. Rose, “Pulsed Eddy-Current Measurements of Corrosion-induced Metal Loss: Theory and Experiment,” in Review of Progress in QNDE, 14, eds. D. O. Thompson and D. E. Chimenti (Plenum, New York), pp. 2065–2072, 1999.
    [11] S. Mitra, P. S. Urali, E. Uzal, J. H. Rose and J. C. Moulder, “Eddy-current measurements pf corrosion-related thinning in aluminum lap splices,” in Review of Progress in QNDE, Vol. 12, eds. D. O. Thompson and D. E. Chimenti (Plenum, New York), pp. 2003–2010, 1993.
    [12] J. A. Bieber, S. K. Shaligram, J. H. Rose, and J. C. Moulder, “Time-gating of pulsed eddy current signals for defect characterization and discrimination in aircraft lap-joints,” in Review of Progress in QNDE, Vol. 16, eds. D. O. Thompson and D. E. Chimenti (Plenum, New York), pp. 1915–1921, 1997.
    [13] W. Podney and J. C. Moulder, “Electromagnetic microscope for deep, pulsed, eddy current inspections,” in Review of Progress in QNDE, Vol. 16, eds. D. O. Thompson and D. E. Chimenti (Plenum, New York), pp.1037 – 1044, 1997.
    [14] B. A . Auld, and J. C. Moulder, “Review of Advances in Quantitative Eddy Current Nondestructive Evaluation,” J. Nondestr. Eval., 18, pp. 3–36, 1999.
    [15] D. H. Harrison, L. D. Jones and S. K. Burke, “Benchmark problems for defect size and shape determination in eddy-current nondestructive evaluation’” J. Nondestr. Eval. 15, pp. 21–34, 1996.
    [16] M. Zhang, J. D. Achenbach, A. Cheng, “Ultrasonic Self-Focusing on the Edge of a Surface-Breaking Crack: Experiment and Modeling,” Journal of Nondestructive Evaluation 19 (1), pp. 33–42, 2000.
    [17] J. C. Moulder, E. Uzal, and J. H. Rose, “Thickness and conductivity of metallic layers from eddy current measurements,” Rev. Sci. Instrum. 63, pp.3455–3465, 1992.
    [18] E. Uzal and J. H. Rose, “The impedance of eddy current probes above layered metals whose conductivity and permeability vary continuously,” IEEE Trans. on Magnetics, vol. 29, no. 2, pp. 1869–1873, March 1993.
    [19] E. Uzal, J. C. Moulder, S. Mitra, and J. H. Rose, “Impedance of coils over layered metals with continuously variable conductivity and permeability: Theory and experiment,” J. Appl. Phys., vol. 74, no. 3, pp. 2076–2089, Aug. 1993.
    [20] D. J. Harrison, “Characterisation of cylindrical eddy-current probes in terms of their spatial frequency spectra,” IEE Proc.-Sci. Meas. Technol, 148 (4), pp. 183–186, 2001.
    [21] N. Bowler, J. R. Bowler and W. Podney, “Response Model of Superconductive, Pulsed eddy-current Probes for Detection of Deep-Lying Flaws,” in Review of Progress in QNDE, 20, eds. D. O. Thompson and D. E. Chimenti (Plenum, New York), pp. 941-8, 2001.
    [22] C. C. Tai, H. C. Yang, Y. H. Liu, “Modeling the Surface Condition of Ferromagnetic Metal by the Swept-Frequency Eddy Current Method,” IEEE Transaction on Magnetics, 38(1), pp. 205-210, 2002.

    下載圖示 校內:立即公開
    校外:2003-08-26公開
    QR CODE