簡易檢索 / 詳目顯示

研究生: 李宗儒
Lee, Zong-Ru
論文名稱: 針對漏電流功耗及浪湧電流最小化運用電源閘電晶體尺寸規劃及喚醒排程之疊代法
An Iterative Approach for Leakage Power and Rush Current Minimization using Power Gate Sizing and Wake-up Scheduling
指導教授: 邱瀝毅
Chiou, Lih-Yih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 94
中文關鍵詞: 電源閘電子設計自動化
外文關鍵詞: Power gate, Electronic Design Automation
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程技術的進步,單一晶片可容納的電晶體數目增加,導致系統中的漏電流功耗日益嚴重。如何解決其產生的漏電流功耗 (leakage power) 已經成為低功率晶片設計上一個重要的課題。Power Gating是一種廣泛用來降低漏電流功耗的技術。Power Gating由睡眠電晶體構成,睡眠電晶體的尺寸會影響系統的效能及漏電流功耗;系統電源被打開時,休眠電晶體的尺寸及開啟的順序會影響喚醒電流(rush current)的大小。本論文運用疊代的方法,結合電晶體尺寸規劃與喚醒排序,找出最小的電源閘電晶體尺寸及最佳的喚醒排程,確保Power Gating在各操作模式下都能保持低功率,與文獻[28]比較,平均減少37%的電源閘控電晶體尺寸及減少37%的漏電流功耗;與文獻[31]比較,降低25%的喚醒電流,由此證明本論文所提出的演算法的有效性。

    With the advancement of semiconductor technology, single chip can accommodate the increased number of transistors, resulting in significant increase in system leakage power. Power gating is a widely used technique to reduce the leakage power consumption. Power gating contains a transistor, known as sleep transistor, whose size will affect the system performance and leakage power consumption. When the circuit is powered on, the rush current depends on turned on sleep transistor size and wake-up sequence. We propose an iterative approach combining sleep transistor sizing and wake-up scheduling to reduce the size of power gates and power-on rush current simultaneously. When compared to [28], the proposed approach decreases 37% in power gating transistor size and 37% in leakage power on average. It also decreases 25% on average in rush current compared with [31].

    Chapter I Introduction 1 I.1 Motivation 1 I.1.1 System Power Consumption 2 I.1.2 Leakage Power Reduction 3 I.1.3 Rush Current Reduction 4 I.2 Overview of Thesis 5 I.3 Contributions 6 I.4 Thesis Organization 6 Chapter II Background 7 II.1 Power Gating 7 II.1.1 Power Gating Architecture 7 II.1.2 Power Gating Behavior 8 II.1.3 Power Gating Design Considerations 9 II.2 Power Gating Type 12 II.2.1 Power Gating Design Considerations 12 II.2.2 Coarse-Grain Power Gating (CPG) 13 II.2.3 Discussion about FPG and CPG 14 II.3 Coarse-Grain Power Gating 14 II.3.1 Multi-Vt Approach 14 II.3.2 Boosted-Gated Approach 16 II.3.3 Body-Bias Approach 18 II.3.4 Sizing Approach 22 Chapter III Related Works 24 III.1 Module-Based Structure Design (MBSD) 24 III.2 Cluster-Based Structure (CBSD) 25 III.3 Distributed Sleep Transistor Network (DSTN) 28 III.4 Considering Charge Balance of DSTN (CCB) 30 III.5 Considering Temporal Correlation of DSTN 32 III.6 Stepwise Wake-up Switching (SWS) 35 III.7 Fixed-Length Delay Chain (FLDC) 36 III.8 Two-Stage Power-On Daisy Chain (2SDC) 37 III.9 Estimation of Rush Current (EST) 38 III.10 Efficient Wake-up Strategy (EWS) 40 Chapter IV Voltage Balance and Intelligent Scheduling Algorithm 45 IV.1 Problem Definition 45 IV.2 Proposed Flow 47 IV.2.1 Waveform Collection 48 IV.2.2 Model Construction 51 IV.2.3 Initialize RST 52 IV.2.4 Voltage Drop Simulation 53 IV.2.5 Record Max Slack 54 IV.2.6 Resizing Sleep Transistor 54 IV.2.7 Reconfigure MIC 57 IV.2.8 Wake-up Scheduling 58 IV.2.9 Wake-up Simulation 60 IV.2.10 Record Time Slack 60 IV.2.11 Refined Sizing 61 IV.3 Summary 66 Chapter V Experimental Results 69 V.1 Experimental Setup 69 V.1.1 Calculation 69 V.1.2 Experimental Procedure 70 V.1.3 Test Circuit Information 74 V.2 Experimental Results 75 Chapter VI Conclusion and Future Work 87 VI.1 Conclusion 87 VI.2 Future Work 88 References 89

    [1] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan, "Leakage current: Moore's law meets static power," Computer, vol. 36, no. 12, pp. 68-75, 2003.
    [2] R. R. Rao, A. Devgan, D. Blaauw, and D. Sylvester, "Parametric yield estimation considering leakage variability," in Proc. IEEE/ACM Design Automation Conference (DAC), 2004, pp. 442-447.
    [3] H. Chang and S. S. Sapatnekar, "Full-chip analysis of leakage power under process variations, including spatial correlations," in Proc. IEEE/ACM Design Automation Conference (DAC), 2005, pp. 523-528.
    [4] N. S. Kim, D. Blaauw, and T. Mudge, "Quantitative analysis and optimization techniques for on-chip cache leakage power," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp. 1147-1156, 2005.
    [5] B. H. Calhoun, F. A. Honore, and A. P. Chandrakasan, "A leakage reduction methodology for distributed MTCMOS," IEEE J. Solid-State Circuits (JSSC), vol. 39, no. 5, pp. 818-826, 2004.
    [6] Z. Liu and V. Kursun, "Charge Recycling MTCMOS for Low Energy Active/Sleep Mode Transitions," in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 2007, pp. 1389-1392.
    [7] M. Keating, D. Flynn, R. Aitken, and K. Shi, Low power methodology manual: for system-on-chip design: Springer, 2007.
    [8] S. Kaijian and D. Howard, "Challenges in sleep transistor design and implementation in low-power designs," in Proc. IEEE/ACM Design Automation Conference (DAC), 2006, pp. 113-116.
    [9] K. Shi and D. Howard, "Sleep Transistor Design and Implementation - Simple Concepts Yet Challenges To Be Optimum," in Proc. IEEE Int. Symp. on VLSI Design, Automation and Test (VLSI-DAT), 2006, pp. 1-4.
    [10] B. Kapoor, S. Hemmady, S. Verma, K. Roy, and M. A. D'Abreu, "Impact of SoC power management techniques on verification and testing," in Proc. Int. Symp. Quality Electronic Design (ISQED), 2009, pp. 692-695.
    [11] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, "1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS," IEEE J. Solid-State Circuits (JSSC), vol. 30, no. 8, pp. 847-854, 1995
    [12] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, and J. Yamada, "A 1-V high-speed MTCMOS circuit scheme for power-down application circuits," IEEE J. Solid-State Circuits (JSSC), vol. 32, no. 6, pp. 861-869, 1997.
    [13] S. Idgunji, "Case study of a low power MTCMOS based ARM926 SoC : Design, analysis and test challenges," in Proc. IEEE Int. Test Conference (ITC), 2007, pp. 1-10.
    [14] H. Kawaguchi, K. I. Nose, and T. Sakurai, "A CMOS scheme for 0.5 V supply voltage with pico-ampere standby current," in Proc. IEEE Int. Solid-State Circuits Conference (ISSCC), 1998, pp. 192-193, 436.
    [15] T. Inukai, M. Takamiya, K. Nose, H. Kawaguchi, T. Hiramoto, and T. Sakurai, "Boosted gate MOS (BGMOS): device/circuit cooperation scheme to achieve leakage-free giga-scale integration," in Proc. IEEE Custom Integrated Circuits Conference (CICC), 2000, pp. 409-412.
    [16] C. Y. Chang, W. B. Yang, C. J. Huang, and C. H. Chien, "New Power Gating Structure with Low Voltage Fluctuations by Bulk Controller in Transition Mode," in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 2007, pp. 3740-3743.
    [17] J. Le Coz, P. Flatresse, S. Engels, A. Valentian, M. Belleville, C. Raynaud, D. Croain, and P. Urard, "Comparison of 65nm LP bulk and LP PD-SOI with adaptive power gate body bias for an LDPC codec," in Proc. IEEE Int. Solid-State Circuits Conference (ISSCC), 2011, pp. 336-337.
    [18] J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, and V. De, "Dynamic sleep transistor and body bias for active leakage power control of microprocessors," IEEE J. Solid-State Circuits (JSSC), vol. 38, no. 11, pp. 1838-1845, 2003.
    [19] J. Kao, S. Narendra, and A. Chandrakasan, "MTCMOS hierarchical sizing based on mutual exclusive discharge patterns," in Proc. IEEE/ACM Design Automation Conference (DAC), 1998, pp. 495-500.
    [20] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, T. Kaneko, and J. Yamada, "A 1-V multithreshold-voltage CMOS digital signal processor for mobile phone application," IEEE J. Solid-State Circuits (JSSC), vol. 31, no. 11, pp. 1795-1802, 1996.
    [21] M. Anis, S. Areibi, M. Mahmoud, and M. Elmasry, "Dynamic and leakage power reduction in MTCMOS circuits using an automated efficient gate clustering technique," in Proc. IEEE/ACM Design Automation Conference (DAC), 2002, pp. 480-485.
    [22] M. Anis, S. Areibi, and M. Elmasry, "Design and optimization of multithreshold CMOS (MTCMOS) circuits," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 10, pp. 1324-1342, 2003.
    [23] W. Wang, M. Anis, and S. Areibi, "Fast techniques for standby leakage reduction in MTCMOS circuits," in Proc. IEEE Int. SOC Conference (SOCC), 2004, pp. 21-24.
    [24] C. Long and L. He, "Distributed sleep transistor network for power reduction," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 12, no. 9, pp. 937-946, 2004.
    [25] E. Pakbaznia and M. Pedram, "Coarse-Grain MTCMOS Sleep Transistor Sizing Using Delay Budgeting," in Proc. Design, Automation and Test in Europe (DATE), 2008, pp. 385-390.
    [26] D. S. Chiou, S. H. Chen, and S. C. Chang, "Sleep Transistor Sizing for Leakage Power Minimization Considering Charge Balancing," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 17, no. 9, pp. 1330-1334, 2009.
    [27] D. S. Chiou, S. H. Chen, S. C. Chang, and C. W. Yeh, "Timing driven power gating," in Proc. IEEE/ACM Design Automation Conference (DAC), 2006, pp. 121-124.
    [28] D. S. Chiou, Y. T. Chen, D. C. Juan, and S. C. Chang, "Sleep Transistor Sizing for Leakage Power Minimization Considering Temporal Correlation," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 8, pp. 1285-1289, 2010.
    [29] D. S. Chiou, D. C. Juan, Y. T. Chen, and S. C. Chang, "Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization," in Proc. IEEE/ACM Design Automation Conference (DAC), 2007, pp. 81-86.
    [30] Yep-Chung Phong "A Fast and Effective Power Gating Transistor Sizing Algorithm for Leakage Power Minimization," in Department of Electrical Engineering Thesis for Master of Science, National Cheng-Kung University, Tainan, Taiwan, January 2012.
    [31] Suhwan Kim, Stephen V. Kosonocky, and Daniel R. Knebel, "Understanding and Minimizing Ground Bounce During Mode Transition of Power Gating Structures," in Proc. IEEE/ACM Int. Symp. Low Power Electronics and Design (ISLPED), 2003, pp. 22, 25-27.
    [32] Rahul Singh, Jong-Kwan Woo, Hyunjoong Lee, So Young Kim, and Suhwan Kim "Power-Gating Noise Minimization by Three-Step Wake-Up Partitioning, " IEEE Trans. Circuit and Syst.-I, vol. 59, no. 4, April 2012.
    [33] Seungwhun Paik, Sangmin Kim, and Youngsoo Shin, "Wakeup Synthesis and Its Buffered Tree Construction for Power Gating Circuit Designs," in Proc. IEEE/ACM Int. Symp. Low Power Electronics and Design (ISLPED), 2010, pp.413-418
    [34] Yu-Ting Chen, Da-Cheng Juan, Ming-Chao Lee, and Shih-Chieh Chang, "An Efficient Wake-up Schedule during Power Mode Transition Considering Spurious Glitches Phenomenon," in Proc. Int. Conf. Computer-Aided Design (ICCAD), Nov. 2007, pp.779-782.
    [35] Ming-Chao Lee, Shih-Chieh Chang, Chun-Sung Su, and Evan Tsai, "Performance and Wake-Up Schedule Optimization of Power Gating Design," in Proc. Int. Conf. SoC Design (ISOCC), Nov. 2008, pp36-39.
    [36] Da-Cheng Juan, Yu-Ting Chen, Ming-Chao, and Shih-Chieh Chang, "An Efficient Wake-Up Strategy Considering Spurious Glitches Phenomenon for Power Gating Design," IEEE Trans. Very Large Scale Integration Systems (VLSI), vol. 18, no. 2, pp.246-255.
    [37] J. M. Rabaey, Digital integrated circuits: a design perspective: Prentice Hall, 1996.
    [38] B. Razavi, Design of analog CMOS integrated circuits: McGraw-Hill, 2001.
    [39] T. Sakurai and A. R. Newton, "Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas," IEEE J. Solid-State Circuits (JSSC), vol. 25, no. 2, pp. 584-594, 1990.
    [40] C. Prasad, M. Agostinelli, C. Auth, M. Brazier, R. Chau, G. Dewey, T. Ghani, M. Hattendorf, J. Hicks, J. Jopling, J. Kavalieros, R. Kotlyar, M. Kuhn, K. Kuhn, J. Maiz, B. McIntyre, M. Metz, K. Mistry, S. Pae, W. Rachmady, S. Ramey, A. Roskowski, J. Sandford, C. Thomas, C. Wiegand, and J. Wiedemer, "Dielectric breakdown in a 45 nm high-k/metal gate process technology," in Proc. IEEE Int. Reliability Physics Symposium (IRPS), 2008, pp. 667-668.
    [41] Synopsys. SMIC-Synopsys Reference Flow 4.0. [Online]. Available: http://www.smics.com/eng/design/reference_flows07.php
    [42] Synopsys and E. Wang. Synopsys Power-gating Design Methodology based on SMIC 90nm Process. [Online]. Available:
    http://www.synopsys.com.cn/information/snug/2007-2008-collection/synopsys-power-gating-design-methodology-based-on-smic-90nm-process
    [43] T. Tanzawa and T. Tanaka, "A dynamic analysis of the Dickson charge pump circuit," IEEE J. Solid-State Circuits (JSSC), vol. 32, no. 8, pp. 1231-1240, 1997.
    [44] F. Assaderaghi, S. Parke, D. Sinitsky, J. Bokor, P. K. Ko, and H. Chenming, "A dynamic threshold voltage MOSFET (DTMOS) for very low voltage operation," IEEE Electron Device Letters (EDL), vol. 15, no. 12, pp. 510-512, 1994.
    [45] K. Shimomura, H. Shimano, N. Sakashita, F. Okuda, T. Oashi, Y. Yamaguchi, T. Eimori, M. Inuishi, K. Arimoto, S. Maegawa, Y. Inoue, S. Komori, and K. Kyuma, "A 1-V 46-ns 16-Mb SOI-DRAM with body control technique," IEEE J. Solid-State Circuits (JSSC), vol. 32, no. 11, pp. 1712-1720, 1997.
    [46] H. Mostafa, M. Anis, and M. Elmasry, "A Novel Low Area Overhead Direct Adaptive Body Bias (D-ABB) Circuit for Die-to-Die and Within-Die Variations Compensation," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 19, no. 10, pp. 1848-1860, 2011.
    [47] M. Barnasconi, "Systemc ams extensions: Solving the need for speed," in Proc. DAC Knowledge center, 2010.
    [48] ISCAS Benchmarks. [Online]. Available:
    http://www.pld.ttu.ee/~maksim/benchmarks/
    [49] M. L. Bushnell, V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Lucent Technologies and Michael L. Bushnell, 2000

    無法下載圖示 校內:2018-09-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE