| 研究生: |
韓宇翔 HAN, YU-HSIANG |
|---|---|
| 論文名稱: |
嘉南大圳南幹線水門流量調控策略 Gates Control Strategies for Flow Regulation in the South Main Canal of the Chianan Irrigation System |
| 指導教授: |
陳璋玲
Chen, Chung-Ling 周乃昉 Chou, Frederick N.-F. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 灌溉調控 、制水門 、分水門 、HEC-RAS 、變量流 、嘉南大圳 |
| 外文關鍵詞: | Irrigation regulation, check gate, division gate, HEC-RAS, unsteady flow, Chianan Irrigation |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
嘉南大圳為臺灣嘉南地區農田水利灌溉系統之重要命脈,其中南幹線為涵蓋面積廣闊之主幹輸水渠道,為確保灌溉效率與水資源調控安全,分水門與制水門的聯合操作策略扮演關鍵角色,其中,分水門需配合幹線的水位操作其開度,確保分水門以後之各支線汲取足夠水量以供應下游灌區,制水門則配合各分水門取水順序來調節幹線水位。
本研究聚焦於南幹線分水門與制水門的調控策略,結合現地資料與 HEC-RAS 模式之變量流模擬功能,針對開度設定與水量調節機制進行模擬。於簡化後的南幹線模型,分析在下游分水門穩定取水的情況下,分水門及制水門開啟時機與開度調整的機制。
研究透過南幹線斷面幾何資料建立水理模型,模擬不同開度條件下之水位與流量變化,並透過流量–開度曲線及實際操作案例,提出一套安全性高且具應變彈性之閘門操作建議模式,相關成果可作為灌溉管理單位於南幹線制水門常態操作或緊急應變之參考依據。
The Chianan Irrigation System is one of the most important agricultural irrigation infrastructures in Taiwan, supporting extensive farmlands in the Chianan Plain. Among its components, the South Main Canal serves as a major conveyance channel responsible for distributing irrigation water to multiple downstream sub-canals through a series of check gates and division gates. Stable and accurate flow regulation in this canal is critical for ensuring irrigation efficiency, equitable water allocation, and operational safety. However, in practice, gate operations are often conducted based on empirical experience, which may induce undesirable unsteady flow effects such as excessive water level fluctuations, prolonged stabilization time, and operational inefficiency.
This study aims to investigate and evaluate gate control strategies for flow regulation in the South Main Canal by applying a one-dimensional unsteady flow numerical model. The objectives are to analyze the hydraulic responses of the canal system under different gate operation scenarios, to identify key factors affecting water level stability, and to propose rational gate adjustment strategies that can reduce transient disturbances during irrigation operations. The numerical simulations consider various gate opening sequences, opening rates, and coordinated operations between check gates and division gates.
The simulation results demonstrate that gradual and coordinated gate operations significantly reduce peak water level fluctuations and shorten stabilization time compared to abrupt or uncoordinated adjustments. The findings highlight the importance of operation sequence and adjustment rate in mitigating unsteady flow propagation within irrigation canals. The proposed control strategies provide practical guidance for improving operational performance and enhancing the reliability of irrigation water delivery in large-scale canal systems.
1. Burt, C. M., Clemmens, A. J., Strelkoff, T. S., Solomon, K. H., Bliesner, R. D., Hardy, L. A., & Howell, T. A. (1997). Irrigation performance measures: Efficiency and uniformity. Journal of Irrigation and Drainage Engineering, 123(6), 423–442. https://doi.org/10.1061/(ASCE)0733-9437(1997) 123:6(423)
2. Burt, C. M., & Styles, S. W. (1998). Modern water control and management practices in irrigation: Impact on performance (ITRC Report No. R 98-001). Irrigation Training and Research Center, California Polytechnic State University, San Luis Obispo.
3. Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. McGraw-Hill.
4. Guan, G., Li, J., Wang, J., & Zhang, L. (2018). Numerical simulation of gate control for unsteady irrigation flow to improve water use efficiency in farming. Water, 10(9), 1196. https://doi.org/10.3390/w10091196
5. Litrico, X., & Fromion, V. (2009). Modeling and control of hydrosystems. Springer.
6. Malekpour, A., & Karney, B. W. (2016). Spurious numerical oscillations in the Preissmann slot method: Origin and suppression. Journal of Hydraulic Engineering, 142(3). https://doi.org/10.1061/(ASCE)HY.1943-7900.000110
7. Rabbani, T., Munier, S., Dorchies, D., Malaterre, P., Bayen, A., & Litrico, X. (2009). Flatness-based control of open-channel flow in an irrigation canal. IEEE Control Systems Magazine, 29(5), 22–30. https://doi.org/10.1109/MCS.2009.932730
8. Serede, J. I., Muthama, N., & Kiplagat, J. (2014). Hydraulic analysis of irrigation canals using HEC-RAS model: A case study of Mwea Irrigation Scheme, Kenya. International Journal of Engineering Research & Technology (IJERT), 4(9), 1–12.
9. U.S. Army Corps of Engineers, Hydrologic Engineering Center. (2025). HEC RAS user’s manual (Version 6.5). U.S. Army Corps of Engineers. https://www.hec.usace.army.mil/confluence/rasdocs/rasum/6.5
10. 王韋鈞(2020),嘉南大圳幹線水閘門智慧化操作探討—以南幹線為例(碩士論文),國立成功大學。
11. 林韋杉(2023),以人工智慧模型結合數值模擬建構明渠流與雨水下水道系統水位預測模型之研究(碩士論文),國立臺灣海洋大學。
12. 吳幸娟(2023),探討農業灌溉管理型態對灌溉管理用水量之影響(博士論文),國立中央大學。
13. 洪嘉鴻(2020),灌溉水門自動化之監測與調控架構建構(碩士論文),國立臺灣大學。
14. 楊喨弘(2013),灌溉渠道取水設施現況調查分析(碩士論文),國立成功大學。
15. 蘇明道、鍾明光(2022),嘉南大圳輪作制度對環境和社會經濟的影響,農業工程學報,68(1)
16. 行政院農業委員會農田水利會(2010),行政院農業委員會99年度農業發展計畫:推廣旱作灌溉及現代化管理設施(初版),臺灣省農田水利會聯合會,p.19-24。