| 研究生: |
楊啟昌 Chi-Chang, Yang |
|---|---|
| 論文名稱: |
多層富矽氧化物/二氧化矽與矽/石墨烯熱電特性之研究 The study on thermoelectric property of Silicon-Rich oxide/Silicon oxide and Si/Graphene multilayers |
| 指導教授: |
施權鋒
Shih, Chuan-Feng |
| 共同指導教授: |
莊鎮宇
Juang, Zhen-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 熱電效應 、矽 、石墨烯 、奈米結構 |
| 外文關鍵詞: | silicon, graphene, thermoelectric, nanostructure |
| 相關次數: | 點閱:69 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用濺鍍製程製作多層富矽氧化物(Silicon-rich oxide, SRO)/二氧化矽(Silicon oxide, SiO2)與多層矽/石墨烯(Graphene)作為基板的聲子阻擋層,以阻絕聲子導熱,使矽成為可應用的熱電材料。
藉由X光繞射儀(High resolution X-ray Diffractometer, HRXRD)、穿透式電子顯微鏡(Transmission Electron Microscope, TEM)及X光光電子光譜(X-ray Photoelectron Spectrometer, XPS)等分析討論不同工作壓力下的的成膜形式,發現不論超晶格結構抑或奈米矽晶堆疊皆能有效降低熱導,而經由Hraman method的量測,由奈米矽晶堆疊的多層膜能取得較高的熱電優值,其ZTM 相較基板提高了10倍,印證多重量子點排列對於功率因數的提升。
藉由以石墨烯取代二氧化矽層,在P-type基板上可取得極高的熱電優值,但RC效應在此難以忽略,也顯示基板的選擇至關重要,在退火後其電導率可望進一步提升,進一步完成模組化的目標。
In our research, the multilayers of silicon rich oxide/silicon dioxide and silicon/graphene were synthesized by reactive magnetron sputtering. The multilayers act as phonon block for the silicon substrate. Our objective is the reduction of thermal conductivity with preservation of electrical conductivity and seebeck coefficient. The structural and physical properties of all multilayers were investigated by TEM, XRD, XPS, TDTR and Harman method. The thermal conductivity successfully drops to accessible range because of phonon scattering in each interface. The variation of proportion and working pressure shows that the existence of silicon nanocrystal might be a key point to preserve power factor. Relation between the formation of multilayers and figure of merit would be discussed. The figure of merit could further increase via replacing the single layer graphene with silicon dioxide. Although the electrical conductivity was still low, it could be further improved after annealing. The result shows the capacity of eco-friendly and low cost Si material with optimized thermoelectric nanostructure.
Reference
[1] S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, et al., "Nanostructured Bulk Silicon as an Effective Thermoelectric Material," Advanced Functional Materials, vol. 19, pp. 2445-2452, 2009.
[2] B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, et al., "Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites," Nano Lett, vol. 12, pp. 2077-82, Apr 11 2012.
[3] A. Yadav, K. P. Pipe, W. Ye, and R. S. Goldman, "Thermoelectric properties of quantum dot chains," Journal of Applied Physics, vol. 105, p. 093711, 2009.
[4] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, pp. 12727-12731, 1993.
[5] C. H, Chen., H. S, Chiou., and S. H, Chu., "The simulation of thermoelectric conversion efficient and power output for thermoelectric generator module," Industrial Materials, vol. 334, p. 103, 2014.
[6] L. Weber and E. Gmelin, "Transport properties of silicon," Applied Physics A, vol. 53, pp. 136-140, 1991// 1991.
[7] S. V. Ovsyannikov and V. V. Shchennikov, "Thermomagnetic and thermoelectric properties of semiconductors (PbTe, PbSe) at ultrahigh pressures," Physica B: Condensed Matter, vol. 344, pp. 190-194, 2004.
[8] J. L. Cui, "Preparation and Electrical Properties of Ternary Compound (PbTe)<sub>1-x</sub>(SnTe)<sub>x</sub> with Nanocrystallines," Key Engineering Materials, vol. 280-283, pp. 389-392, 2005.
[9] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, et al., "Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy," Applied Physics Letters, vol. 93, p. 193121, 2008.
[10] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nat Mater, vol. 7, pp. 105-114, 02//print 2008.
[11] G. Zhu, H. Lee, Y. Lan, X. Wang, G. Joshi, D. Wang, et al., "Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium," Physical Review Letters, vol. 102, 2009.
[12] S. Cecchi, T. Etzelstorfer, E. Müller, A. Samarelli, L. Ferre Llin, D. Chrastina, et al., "Ge/SiGe superlattices for thermoelectric energy conversion devices," Journal of Materials Science, vol. 48, pp. 2829-2835, 2012.
[13] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, 3rd, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature, vol. 451, pp. 168-71, Jan 10 2008.
[14] J. Tang, H. T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, et al., "Holey silicon as an efficient thermoelectric material," Nano Lett, vol. 10, pp. 4279-83, Oct 13 2010.
[15] M. Nomura, Y. Kage, D. Müller, D. Moser, and O. Paul, "Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications," Applied Physics Letters, vol. 106, p. 223106, 2015.
[16] M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, "Phonon-boundary scattering in thin silicon layers," Applied Physics Letters, vol. 71, pp. 1798-1800, 1997.
[17] Y. S. Ju and K. E. Goodson, "Phonon scattering in silicon films with thickness of order 100 nm," Applied Physics Letters, vol. 74, p. 3005, 1999.
[18] W. Liu and M. Asheghi, "Phonon–boundary scattering in ultrathin single-crystal silicon layers," Applied Physics Letters, vol. 84, p. 3819, 2004.
[19] M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, "Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates," Journal of Heat Transfer, vol. 120, p. 30, 1998.
[20] C. Huh, K. H. Kim, B. K. Kim, W. Kim, H. Ko, C. J. Choi, et al., "Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures," Adv Mater, vol. 22, pp. 5058-62, Nov 24 2010.
[21] 曾學智., "多層富矽氧化物/二氧化矽發光二極體之研究," ed. 國立成功大學, 2016.
[22] G. Templeton. (2015). What is graphene.
[23] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004-10-22 00:00:00 2004.
[24] S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, et al., "Dimensional crossover of thermal transport in few-layer graphene," Nat Mater, vol. 9, pp. 555-558, 07//print 2010.
[25] M. Wilson, "Electrons in atomically thin carbon sheets behave like massless particles," Physics Today, vol. 59, pp. 21-23, 2006.
[26] A.-Y. Lu, S.-Y. Wei, C.-Y. Wu, Y. Hernandez, T.-Y. Chen, T.-H. Liu, et al., "Decoupling of CVD graphene by controlled oxidation of recrystallized Cu," RSC Advances, vol. 2, p. 3008, 2012.
[27] G. Deokar, J. Avila, I. Razado-Colambo, J. L. Codron, C. Boyaval, E. Galopin, et al., "Towards high quality CVD graphene growth and transfer," Carbon, vol. 89, pp. 82-92, 2015.
[28] D. Dragoman and M. Dragoman, "Giant thermoelectric effect in graphene," Applied Physics Letters, vol. 91, p. 203116, 2007.
[29] Y. Ouyang and J. Guo, "A theoretical study on thermoelectric properties of graphene nanoribbons," Applied Physics Letters, vol. 94, p. 263107, 2009.
[30] H. Sevincli, C. Sevik, T. Cain, and G. Cuniberti, "A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons," Sci Rep, vol. 3, p. 1228, 2013.
[31] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, et al., "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, vol. 466, pp. 470-3, Jul 22 2010.
[32] H. Wang, R. McCarty, J. R. Salvador, A. Yamamoto, and J. König, "Determination of Thermoelectric Module Efficiency: A Survey," Journal of Electronic Materials, vol. 43, pp. 2274-2286, 2014.
[33] D. Comedi, O. H. Y. Zalloum, E. A. Irving, J. Wojcik, T. Roschuk, M. J. Flynn, et al., "X-ray-diffraction study of crystalline Si nanocluster formation in annealed silicon-rich silicon oxides," Journal of Applied Physics, vol. 99, p. 023518, 2006.
[34] B. Y. Park, S. Lee, K. Park, C. H. Bae, and S. M. Park, "Enhancement of light emission from silicon nanocrystals by post-O[sub 2]-annealing process," Journal of Applied Physics, vol. 107, p. 014314, 2010.
[35] A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination," Physical Review, vol. 56, pp. 978-982, 1939.
[36] D. G. Cahill, M. Katiyar, and J. R. Abelson, "Thermal conductivity ofa-Si:H thin films," Physical Review B, vol. 50, pp. 6077-6081, 1994.
[37] C. N. Liao, C. Chen, and K. N. Tu, "Thermoelectric characterization of Si thin films in silicon-on-insulator wafers," Journal of Applied Physics, vol. 86, p. 3204, 1999.
[38] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, pp. 597-602, 10/11/print 2001.
[39] Y. Nakamura, M. Isogawa, T. Ueda, S. Yamasaka, H. Matsui, J. Kikkawa, et al., "Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material," Nano Energy, vol. 12, pp. 845-851, 2015.
[40] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, vol. 473, pp. 51-87, 2009.
[41] M. Hiramatsu, H. Kondo, and M. Hori, "Graphene Nanowalls," 2013.
[42] Q. Liang, X. Yao, W. Wang, Y. Liu, and C. P. Wong, "A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials," ACS Nano, vol. 5, pp. 2392-2401, 2011/03/22 2011.