簡易檢索 / 詳目顯示

研究生: 周佳泊
Chou, Chia-Po
論文名稱: 氧化鋅:鋰薄膜之製作及其特性探討
Fabrications and Characterizations of ZnO:Li Thin Films
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 氧化鋅磁控濺鍍鐵電介電
外文關鍵詞: ZnO, LZO, Sputtering, ferroelectric, dielectric
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻磁控濺鍍法沉積氧化鋅摻雜鋰(LZO)薄膜於ITO玻璃基板上製作Metal-Insulator-Metal(MIM)電容結構,並對其物性、電性、光學作分析。藉由不同鋰摻雜濃度,以及不同濺鍍參數如腔體壓力、氧氣分率、基板溫度、退火溫度等參數的改變,探討濺鍍參數對LZO薄膜的影響,以獲得最佳特性之濺鍍參數。
    在物性分析方面,藉由SEM、XRD、AFM等儀器分析薄膜的表面型態、結晶性與粗糙度。在電性分析方面,採用阻抗分析儀HP-4284A 和半導體參數分析儀HP-4155C分別來量測LZO薄膜的電容對電壓(C-V)特性與電流密度對電場(J-E)特性,並使用鐵電性質量測系統量測LZO薄膜之殘留極化量與矯頑電場(P-E)電滯曲線,探討MIM電容結構的特性。光學方面,採用UV-visible量測穿透率,並探討其光學能隙之變化。
    由實驗結果得知,在最佳濺鍍參數條件下,薄膜之介電常數為13.4,漏電流於外加電場0~100(kV/cm)下的皆維持在10-8(A/cm2)以下,且由電滯曲線圖可得殘餘極化量(Pr)為0.79μC/cm2與矯頑電場(Ec)為107 kV/cm,其在可見光波長之平均穿透率達85%以上,具有良好之鐵電與介電特性,擁有低漏電流,高光學穿透率以及低溫製程等優點。

    In this study, the reactive rf magnetron sputtering was used to deposit ZnO:Li (LZO) ferroelectric and dielectric thin films on ITO Glass substrate, and Metal-Insulator-Metal(MIM)capacitor structure was fabricated. We used different Li doping concentrations and the effects of various sputtering parameters on the characteristics of thin films, such as the chamber pressure, argon oxygen ratio, substrate temperature, annealing temperature were discussed, and then the optimal sputtering parameters were determined.

    The physical characteristics of LZO thin films were obtained by the analyses of SEM, XRD patterns and AFM morphologies. The surfaces, crystallization and surface roughness of thin films were discussed. To investigate the electrical properties, the capacitance-voltage, current-voltage and P-E hysteresis characteristics of LZO thin films were measured by the HP-4284A impedance analyzer, HP-4155C semiconductor parameter analyzer and RADIANT Ferroelectric test system. Optical properties, the transmittance and optical energy band gap were measured by UV-visible Spectrophotometer, respectively. Furthermore, Characteristics of the MIM structure were discussed.

    From the experimental results, the dielectric constant with optimal sputtering parameters was about 13.4, and the leakage current of thin film was under 10-8 A/cm2 during the applied electrical field of thin film was 0~100kV/cm. The remanent polarization (Pr) and coercive field (Ec) were 0.79 μC/cm2 and 107 kV/cm from the P-E hysteresis loops, and the average transmittance were better than 85%. Our LZO thin films has many advantages including good ferroelectric and dielectric properties, with low leakage current, high optical transmittance and low temperature process.

    中文摘要......................................I ABSTRACT..............................III 誌謝..........................................IV 目錄..........................................VI 表目錄......................................IX 圖目錄........................................X 第一章 緒論................................ 1 1-1 前言................................... 1 1-2 研究動機........................... 3 1-3 論文架構........................... 4 第二章 理論與文獻回顧............ 5 2-1 鐵電材料結構特性........... 5 2-2 介電極化和極化理論....... 6 2-3 鐵電材料介電與電滯曲線[14] .... 9 2-4 漏電流機制[18.20] ......... 12 2-5 氧化鋅(ZNO)晶體結構及特性..... 15 2-6 摻雜鋰之氧化鋅特性..... 17 2-6-1 鐵電性之生成......... 17 2-6-2 電阻率分析............. 17 2-7 薄膜沉積原理................. 18 2-7-1 沉積現象................. 18 2-7-2 薄膜表面及截面結構......... 19 2-8 濺鍍原理......................... 21 第三章 實驗過程及研究方法............ 24 3-1 實驗材料......................... 24 3-1-1 基板材料................. 24 3-1-2 靶材材料................. 24 3-1-3 基板清洗溶劑及實驗氣體....... 24 3-2 LZO靶材配置................. 25 3-3 元件製作流程................. 25 3-3-1 基板清潔................. 26VII 3-3-2 射頻磁控濺鍍流程 ............. 27 3-3-3 成長氧化鋅摻雜鋰薄膜之影響因素........ 27 3-4 LZO薄膜結構分析......... 30 3-4-1 X光繞射(XRD, X-Ray Diffraction).............. 30 3-4-2 掃描式電子顯微鏡(SEM, Scanning Electron Microscope)...... 31 3-4-3 原子力顯微鏡(AFM, Atomic Force Microscopy)...... 31 3-5 LZO薄膜電性分析......... 33 3-5-1 漏電流(leakage current)分析............. 33 3-5-1 介電常數(dielectric constant)分析........ 33 3-5-3 P-E遲滯曲線量測 ............... 34 3-6 LZO薄膜光學分析......... 34 第四章 結果與討論................ 35 4-1 前言與實驗固定變因..... 35 4-2 鋰摻雜濃度之影響......... 36 4-2-1 前言......................... 36 4-2-2 X光繞射(XRD)分析........... 37 4-2-3 掃描式電子顯微鏡(SEM)分析........ 38 4-2-4 原子力顯微鏡(AFM)分析................ 39 4-2-5 漏電流(J)特性分析............. 39 4-2-6 介電常數-電壓(εr-V)特性分析..... 39 4-2-7 極化對電場強度(P-E)特性分析....... 40 4-2-8 光學分析................. 41 4-2-9 總結......................... 41 4-3 腔體壓力影響................. 54 4-3-1 前言......................... 54 4-3-2 X光繞射(XRD)分析........... 55 4-3-3 原子力顯微鏡(AFM)分析.......... 55 4-3-4 漏電流(J)特性分析............. 56 4-3-5 介電常數-電壓(εr-V)特性分析...... 56 4-3-6 極化對電場強度(P-E)特性分析......56 4-3-7 光學分析................. 57 4-3-8 總結......................... 57 4-4 基板溫度之影響............. 63 4-4-1 前言......................... 63 4-4-2 X光繞射(XRD)分析........... 64 4-4-3 原子力顯微鏡(AFM)分析.... 64 4-4-4 漏電流(J)特性分析............. 65VIII 4-4-5 介電常數-電壓(εr-V)特性分析......... 65 4-4-6 極化對電場強度(P-E)特性分析........ 65 4-4-7 光學分析................. 66 4-4-8 總結......................... 66 4-5 氧氣分率之影響............. 72 4-5-1前言.......................... 72 4-5-2 X光繞射(XRD)分析........... 73 4-5-3 原子力顯微鏡(AFM)分析........ 73 4-5-4 漏電流(J)特性分析............. 73 4-5-5 介電常數-電壓(εr-V)特性分析....... 74 4-5-6 極化對電場強度(P-E)特性分析......74 4-5-7 光學分析................. 75 4-5-8 總結......................... 75 4-6 退火溫度之影響............. 82 4-6-1 前言......................... 82 4-6-2 X光繞射(XRD)分析........... 83 4-6-3 原子力顯微鏡(AFM)分析....... 83 4-6-4 漏電流(J)特性分析............. 83 4-6-5 光學分析................. 84 4-6-6 總結......................... 84 第五章 結論與未來展望.......... 88 參考文獻.................................... 89

    [1]J. F. Scott, and C .A .Araujo, “Ferroelectric Memory ” ,Scince,
    246,1400,(1989).
    [2]B. Prince, ”Emerging Memories-Technologies and Trend”, Kluwer Academic Publishers ,4,(2002).
    [3]富士通與東京工業大學聯手開發FeRAM的新型材料,電子工程專輯,(2006).
    [4]H.S.Nalwa,“Ferroelectric and dielectric thin films”,Academic press, New York, (2002).
    [5]H.Uchida, R.Ueno, H.Nakaki, H.Funakubo and S.Koda,”Ion Modification for Improvement of Insulating and Ferroelectric Properties of BiFeoO3 Thin Films Fabricated by Chemical Solution Deposition“,J.J.Appl.Phys., 44(18), Ll561-l563, (2005).
    [6]K.U.H.Tabata and T.Kawai,“Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin film at room temperature”, Appl.Phys.Lett.75,555,(1999).
    [7]X,Qi,J.Dho,R.Tomov,M.G.Blamire,J.L.MacManus-Driscoll,“Greatly reduced leakage current andconduction mechanism in aliovalent-ion-doped BiFeO3”, Appl.Phys.Lett.86, 062903,(2005).
    [8]D.C.Look, Materials Science and Engineering, B80,383(2001).
    [9]呂正傑,詹世雄,鐵電記憶體簡介,奈米通訊,第五卷第四期(1998).
    [10]鄭佩慈,真空技術組,儀器科學中心簡訊,68期,(2005)
    [11]R.A.Swalin, Wiley, New York (1974)
    [12]李雅明,”固態電子學”,全華科技圖書股份有限公司,161-167頁,(1997)。
    [13]A.J.Moulson and J.M.Herbert : published by Chapman and Hall, (1990).
    [14]曲遠方主編,新材料與技術應用叢書,功能陶瓷材料,初版03,(2006)
    [15]M.E.Lines and A.M.Glass,”Principles and applications of ferroelectrics and related materials”,Oxford University ,New York,(2001)
    [16]B.H.Park,B.S.Kang,S.D.Bu,T.W.Noh, J.Lee and W.Jo,“Lanthanum- substituted bismuth tianate for use in non-volatile memories”, Nature 401, 682, (1999)
    [17]溫志遠,不同鉍含量與掺雜釔對鐵酸鉍氧化物薄膜的影響,清華大學材料科學與工程學系,碩士論文,(2006)
    [18] S.M.Sze, Physics of Semiconductor Devices, New York: Wiley,(1981)
    [19] Y.S.Yang, S.J.Lee, S.H.Kim, B.G.Chae, and M.S.Jang, “Schottky barrier effects in the electronic conduction of sol–gel derived lead zirconate titanate thin film capacitors,”J.J. Appl. Phys.84 [9] 5005-5011 (1998).
    [20] Stolichnovb and A. Tagantsev,“Space-charge influenced -injection model for conduction in Pb(ZrxTi1-x)O3 thin films,”J.J.Appl.Phys.84[6] 3216-3225 (1998)
    [21] J.K.Srivastava, Lily Agarwal, and A.B.Bhattachryya, Electrical Characteristics of Lithium-doped ZnO Films, J. Electrochem. Soc. 136 (136), p. 3414, (1989)
    [22] P.Bonasewicz, W.Hirschwald and Neumann, Influence of surface processes on electrical, photochemical, and thermodynamical properties of zinc oxide films, J.Electrochem. Soc. 133 (11), p. 2270, (1986)
    [23]莊達人,“VLSI 製造技術”,高立圖書股份有限公司,146-160頁,(1995)。
    [24] J.A.Thornton : J.Vac.Sci.Technol., vol.11, pp.666-698,(1974)。
    [25] A.Onodera, N.Tamaki, H.Yamashita: Jpn.J.Appl.Phys.35, 5160(1996)
    [26] E.D.Kolb, R.A.Laudise: J.Am.Ceram.Soc.49, 302 (1966)
    [27] S.H.Jeong , B.N.Park, S.-B. Lee, J.-H. Boo Thin Solid Films 516 5586–5589 (2008)
    [28] ZHU Xing-Wen, LI Yong-Qiang, LU Ye, LI Ying-Wei, XIA Yi-Ben Journal of Inorganic Materials, (2007)
    [29]阿部東彥,家田正之,高正雄譯,“電漿化學”,復漢出版社,頁16,(1984)。
    [30]S.B.Krupanidhi and M.Sayer : J.Appl.Phys., vol.56, pp.3308-3318, (1984).
    [31] Rajesh DAS, Koel ADHIKARY, and Swati AYy,Japanese ,Journal of Applied Physics,Vol. 47, No. 3, (2008), pp. 1501–1506
    [32] J.D.Ye, S.Gu, S.Zhu, T.Chen, W.Liu, F.Qin, L.Hu, R.Zhang, Y.Shi, and Y.Zheng, J.Vac. Sci. Technol. A 21(4), (2003)
    [33] Y.Natsume, H.SakataU , Thin Solid Films 372, (2000)
    [34] X.S.Wang, Z.C.Wu, J.F. Webb, Z.G. Liu, Appl. Phys. A 77, (2003)

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE