| 研究生: |
劉冠群 Liu, Kuan-Chun |
|---|---|
| 論文名稱: |
整合降昇壓與返馳式轉換電路之功因修正器 A Power Factor Corrector with Integrated Buck-Boost and Flyback Conversion Circuit |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 交/直流轉換器 、非連續導通模式 、功率因數修正 、單級式 、直接功率傳送 、再生型緩震電路 |
| 外文關鍵詞: | ac/dc Converter, Discontinuous Conduction Mode (DCM), Power Factor Correction (PFC), Single-Stage, Direct Power Transfer (DPT), Regenerative Snubber |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一新型單級式轉換器,在架構上結合一升降壓型功因修正電路與一返馳式直/直流轉換電路。藉由一組變壓器取代前級電流修正電感,部分輸入功率可直接傳送到輸出,而非先儲存在直流匯流排,不僅可降低直流匯流排電壓,亦可避免功率損失,進而提升轉換器效率。另一方面,使用返馳式直/直流轉換電路雖可達到電器隔離的功用,但儲存於變壓器之漏感能量會對功率開關元件造成電壓突波,可能造成元件損壞。因此,本論文亦於電路中整合一再生型緩震電路,不僅可回收漏感能量,亦可抑制因變壓器漏感造成開關電壓突波的問題。
本論文詳述轉換器操作原理、穩態分析與參數設計,並實際製作一額定功率100W,輸入電壓85 Vrms 到265 Vrms,輸出電壓48 V 的雛型電路。根據實驗結果證實,本文所提之轉換器架構可有效抑制功率開關之電壓突波並具有低直流匯流排電壓。此外,亦可得接近於1之功率因數,轉換器最高效率可達92.2%。
The thesis proposes a new single-stage converter by integrating a buck-boost converter for power factor correction (PFC) with a flyback dc/dc converter. By replacing the current-shaping inductor of a PFC semi-stage with a transformer, part of the input power is transferred to the output side directly instead of being stored in the dc bus capacitor first. This technique reduces dc bus voltage, prevents power dissipation, and enhances conversion efficiency. Although electrical isolation can be achieved by using a flyback dc/dc converter, the leakage inductance energy of the transformer causes voltage spikes in power devices. Hence, a regenerative snubber, which can not only recycle the leakage inductance energy, but also suppress the voltage spike problem, is proposed in the thesis.
The operational principles, steady-state analysis, and design guidelines of the proposed converter are presented in this thesis. The features of the proposed converter have been verified by implementing a 100 W prototype circuit. The line input voltage is ranged from 85 Vrms to 265 Vrms and with a dc output voltage of 48 V. The experimental results show the voltage spike on the power switch can be suppressed effectively and a low dc bus voltage can be achieved. Moreover, close-to-unity power factors can be obtained with a maximal circuit efficiency of 92.2%.
[1] S. Herraiz, L. Sainz, and J. Pedra, “Line side behavior of single-phase uncontrolled rectifiers,” in Proc. Ninth International Harmonics and Quality of Power Conference, Orlando, America, vol. 2, pp. 577-582, Oct. 2000.
[2] International Electrotechnical Commission, Limits for harmonic current emissions, IEC EMC part 3-2, 3rd ed., Nov. 2009.
[3] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Transactions on Industrial Electronics, vol. 50, no. 5, pp. 962-981, Oct. 2003.
[4] J. Zhang, M. M. Jovanovic, and F. C. Lee, “Comparison between CCM single-stage and two-stage boost PFC converters,” in Proc. Applied Power Electronics Conference and Exposition, APEC, Dallas, America, vol. 1, pp. 335-341, Mar. 1999.
[5] B. Sharifipour, J. S. Hung, P. Liao, L. Huber, and M. M. Jovanovic, “Manufacturing and cost analysis of power-factor-correction circuits,” in Proc. Applied Power Electronic Conference and Exposition, APEC, Anaheim, America, vol. 1, pp. 490-494, Feb. 1998.
[6] M. M. Jovanovic, D. M. C. Tsang, and F. C. Lee, “Reduction of voltage stress in integrated high-quality rectifier-regulators by variable-frequency control,” in Proc. Applied Power Electronics Conference and Exposition, APEC, Orlando, America, vol. 2, pp. 569-575, Feb. 1994.
[7] M. T. Madigan, R. W. Erickson, and E. H. Ismail, “Integrated high-quality rectifier regulators,” IEEE Transactions on Industrial Electronics, vol. 46, no. 4, pp. 749-758, Aug. 1999.
[8] T. F. Wu and Y. K. Chen, “Analysis and design of an isolated single-stage converter achieving power-factor correction and fast regulation,” IEEE Transactions on Industrial Electronics, vol. 46, no. 4, pp. 759-767, Aug. 1999.
[9] J. M. Alonso, M. A. D. Costa, and C. Ordize, “Integrated buck-flyback converter as a high-power-factor off-line power supply,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1090-1100, Mar. 2008.
[10] J. M. Alonso, J. Vina, D. G. Vaquero, and R. Osorio “Analysis and Design of the integrated double buck-boost converter as a high-power-factor driver for power-LED lamps,” IEEE Transactions on Industrial Electronics, vol. 59, no. 4, pp. 1689-1697, Apr. 2012.
[11] J. L. Lin, M. Z. Chang, and S. P. Yang, “Synthesis and analysis for a novel single-stage isolated high power factor correction converter,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 52, no. 9, pp. 1928-1939, Sep. 2005.
[12] C. M Wang, J. H. Su, and M. T. Liu, “A novel single-switch single-stage electronic ballast with high input power factor,” in Proc. International Conference on Power Electronics and Drives System, Kuala Lumpur, Malaysia, vol. 2, pp. 1217-1222, 2005.
[13] H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE Southeastcon, Orlando, America, pp. 348-353, Apr. 1998.
[14] K. Taniguchi and Y. Nakaya, “Analysis and improvement of input current waveforms for discontinuous-mode boost converter with unity power factor,” in Proc. Power Conversion Conference, Nagaoka, Japan, vol. 1, pp. 399-404, Aug. 1997.
[15] J. J. Lee, J. M. Kwon, E. H. Kim, W. Y. Choi, and B. H. Kwon, “Sinlge-stage single-stage PFC flyback converter using a synchronous rectifier,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1352-1365, Mar. 2008.
[16] J. Qian, Q. Zhao, and F. C. Lee, “Single-stage single-switch power-factor-correction AC/DC converters with DC-bus voltage feedback for universal line applications,” IEEE Transactions on Power Electronics, vol. 13, no. 6, pp. 1079-1088, Nov. 1998.
[17] H. Ma, Y. Ji, and Y. Xu, “Design and analysis of single-stage power factor correction converter with a feedback winding,” IEEE Transactions on Power Electronics, vol. 25, no. 6, pp. 1460-1470, Jun. 2010.
[18] J. Y. Lee, “Single-stage AC/DC converter with input-current dead-zone control for wide input voltage ranges,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 724-732, Apr. 2007.
[19] H. Y. Li, H. C. Chen, and L. K. Chang, “Analysis and design of a single-stage parallel AC-to-DC Converter,” IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2989-3002, Dec. 2009.
[20] N. Golbon and G. Moschopoulos, “A low-power AC-DC single-stage converter with reduced DC bus voltage variation,” IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3714-3724, Aug. 2012.
[21] S. K. Ki and D. D. C. Lu, “Extension of minimum separable switching configuration modelling to single-stage AC/DC converters with direct power transfer,” IET Power Electronics, vol. 5, no. 7, pp. 1154-1163, Aug. 2012
[22] D. D. C. Lu, D. K. W. Cheng, and Y. S. Lee, “Single-stage AC-DC power-factor-corrected voltage regulator with reduced intermediate bus voltage stress,” in Proc. Electric Power Applications, vol. 150, no. 5, pp. 506-514, Sep. 2003.
[23] H. S. Athab, D. D. C. Lu, A. Yazdani, and B. Wu, “An efficient single-stage quasi-active PFC converter with continuous input current and low DC-bus voltage stress,” IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1735-1749, Apr. 2014.
[24] Z. Hossain, K. J. Olejniczak, K. C. Burgers, and J. C. Balda, “Design of RCD snubbers based upon approximations to the switching characteristics. I. Theoretical development,” in Proc. Electronic Machines and Drives Conference Record, Milwaukee, America, pp. TA2/6.1-TA2/6.3, May 1997.
[25] R. T. H. Li and H. S. H. Chung, “A passive lossless snubber cell with minimum stress and wide soft-switching range,” IEEE Transactions on Power Electronics, vol. 25, no. 7, Jul. 2010.
[26] A. Abramovitz, C. S. Liao, and K. Smedley, “State-plane analysis of regenerative snubber for flyback converters,” IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 5323-5332, Nov, 2013.
[27] C. Yartak, A, Abramovitz, and K. M. Smedley, “Analysis and design of energy regenerative snubber for transformer isolated converters,” IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 6030-6040, Nov, 2014.
[28] Y. C. Li and C. L. Chen, “A novel single-stage high-power-factor AC-to-DC LED driver circuit wih leakage inductance energy recycling,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 793-802, Feb. 2012.
[29] D. D. C. Lu, H. H. C. Lu, and V. Pjevalica, “A single-stage AC/DC converter with high power factor, regulated bus voltage and output voltage,” in Proc. Conference of the IEEE Industrial Electronics Society, IECON, Taipei, Taiwan, pp.1455-1460, Nov. 2007.
[30] V. Vlatkovic, D. Borojevic, and F. C. Lee, "Input filter design for power factor correction circuits," IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 199-205, Jan. 1996.
[31] Y. C. Yan, S. J. Cheng, C. C. Chuang, H. J. Chiu, Y. K. Lo, and S. C. Mou, “A single-stage soft-switching flyback converter for power-factor-correction applications,” in Proc. IEEE Vehicle Power and Propulsion Conference, Dearborn, America, pp. 1412-1415, Sep. 2009.
[32] J. W. Yang and H. L. Do, “Efficient single-switch boost-dual-input flybck PFC converter with reduced switching loss,” IEEE Transactions on Industrial Electronics, vol. 52, no. 12, pp. 7460-7468, Dec. 2015.
[33] J. M. Alonso, J. Vina, D. Gacio, G. Martinez, and R. Osorio, “Analysis and Design of the Integrated Double Buck-Boost Converter as a High-Power-Factor Driver for Power-LED Lamps,” IEEE Transactions on Industrial Electronics, vol. 59, no. 4, Apr. 2012.
[34] M. A. Al-Saffar, E. H. Ismail, and A. J. Sabzali, “Integrated Buck-Boost-Quadratic Buck PFC Rectifier for Universal Input Applications,” IEEE Transactions on Power Electronics, vol. 24, no. 12, Dec. 2009.