| 研究生: |
董東璟 Doong, Dong-Jiing |
|---|---|
| 論文名稱: |
波浪遙測的不確定性分析 Uncertainty Assessment of Wave Remote Sensing |
| 指導教授: |
莊士賢
Chuang, Zsu-Hsin 高家俊 Kao, Chia-Chuen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 不確定性 、雷達測波 、資料品管 、小波轉換 |
| 外文關鍵詞: | uncertainty, wavelet transformation, radar wave observation, data quality check |
| 相關次數: | 點閱:102 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
瞭解海洋環境與我們的生活息息相關,正確地海洋環境資訊是從事安全的海岸工程設計與海域活動的依據,”波浪”是海洋環境中主要的參數,為本文的研究對象。波浪受到氣象、地形等因素的影響,是相當複雜的紛紜現象,研究波浪的方法除了從事水工試驗與數值模式分析之外,”觀測(observation)”是研究波浪重要的手段。
波浪觀測區分為現場觀測(in-situ measurement)和遙測(remote sensing technique)兩種。現場觀測是感測器直接與海面接觸來進行量測的工作,被視為是最正確的量測結果;遙測方法具有探測廣大海面的波浪狀態的能力,是未來可以用來測波的工具之一,在波浪遙測的方式中,利用雷達(radar)從事波浪觀測的研究是最有效的方法。雖然遙測是一種很有潛力的測波方式,在正式應用這個方式之前,必須瞭解幾個疑問,這包含了波浪遙測結果的正確性與準確程度是如何。
所有的量測工作都被假設是有量測誤差的,不確定性(uncertainty)是度量誤差的一種方式,也是衡量觀測資料品質的一個定量指標。為了瞭解波浪遙測結果的正確性與準確性,可以從研究波浪遙測結果的不確定性著手,不確定性的分析一方面可以瞭解誤差程度,增加使用波浪遙測資料的信心,另一方面,不確定性分析結果可以做為波浪遙測系統改進的參考。雷達測波的不確定來源可能從雷達訊號擷取與影像分析等過程產生,由於雷達是一種間接的波浪觀測方式,為了獲得絕對的波浪觀測值,雷達測波結果必須與鄰近的現場觀測資料從事率定的工作,這是雷達測波作業中很重要的一個步驟,本研究目的即是在評估在雷達測波的率定過程中所產生的不確定性有多少。
為了達到上述研究目的,本文包含三個研究內容,首先是建立率定模式,第二部份是雷達測波的不確定性分析,包含了模式中參數的不確定性與模式本身的不確定性分析,本研究最後則探討消減雷達測波不確定性可能的方法,做為未來雷達測波作業的參考。
為了建立雷達測波率定模式,必須計算雷達影像譜來分析雷達回波訊號的訊噪比(Signal to Noise Ratio, SNR),分析訊噪比與海面波高之間存在的關係,由於近岸海域的雷達影像為非均勻性(non-homogeneous),利用傳統的傅立葉譜分析方法並不合適,因此本研究基於小波理論發展了一套非均勻影像譜分析方法,驗證結果顯示可以正確地分析近岸雷達影像譜,本文研究發現,雷達回波的訊噪比與海面波高之間存在著線性關係。為了獲得高品質的現場資料從事雷達測波的率定研究,同時為了要評估率定模式中參數的不確定性,本文建立一個資料品管方法,包含了原始時序列資料的品管與統計資料的品管方式,藉由品管前後現場資料的品質變化來研究參數的不確定程度。在本文第六章則計算波浪遙測率定模式的不確定性,根據不確定性的傳遞理論,計算整體雷達波浪遙測的不確定性與各種不確定來源所佔的比率,此結果有助於未來改善雷達測波系統準確性的參考。
透過本研究得知雷達測波所產生的不確定性主要的來自於現場的率定資料,其次則是雷達影像譜的方析方法,至於率定模式的選擇所產生的不確定性並不顯著。為了要減低雷達測波結果的不確定性,提昇雷達測波結果的正確性,在率定過程中,收集具有代表性的現場波浪資料是最重要的工作,同時對於現場資料從事品管檢測,不但獲得高品質的現場資料,也消減了波浪遙測的不確定性,也就是說要有好的雷達測波結果必須採用高品質的現場觀測資料從事率定工作,因此現場觀測與遙測是互相依賴缺一不可的。
Ocean wave, among the natural phenomena, is one of the most complex factors prevalent in coastal and ocean engineering. Its features are extremely random, affected by meteorological factors, topological conditions and currents, which cannot be fully understood by numerical or physical models alone. Field measurement must be performed to increase the knowledge of waves.
The most common approaches to wave measurement can be categorized as direct and indirect methods represented by In-Situ measurement and Remote Sensing technique respectively. The data measured from the direct in-situ method is viewed as ground truth data. The remote sensing technique provides extensive sets of ocean surface data. It points to a developing trend of coastal and ocean monitoring methods. Among all the sensors, RADAR (Radio Detection And Ranging) is potentially the key instrument for wave measurement purposes due to by its properties of high resolution and fewer environmental limitations. However, although the remote sensing technique is such a promising tool, with it exist some problems such as confidence in the correctness and accuracy of remotely sensed data.
Any measurement is subject to imperfections and potential errors. This uncertainty is defined as the measure of measurement error and serves as the quantitative indication of the quality of measurement data. Assessment of uncertainty increases the confidence of data users and provides information for technical improvements in radar wave observation systems. The uncertainty of wave remote sensing is multiplied by variables such as data acquisition, image processing, correction and so on. Due to the remote sensing technique being an in-direct observation method, significant parameters need to be calibrated with in-situ data which demonstrates that the calibration process is the vital procedure in setting a radar wave observation system. The purpose of this study is to assess the uncertainty of remotely sensed wave heights produced by the calibration processes.
To achieve this, several tasks need to be performed beginning with the establishment of the calibration model. Using the idea that the radar wave height is correlated with the image SNR (Signal to Noise Ratio), a linear regression model can be identified. Second comes the estimation of uncertainties, including both uncertainty from the parameters within the model and uncertainty from the model itself. In the final part of this study, the uncertainty reduction approaches are presented and discussed.
In order to establish the calibration model, the spectrum has to be extracted from radar images. The non-homogeneity property is identified in the nearshore area in chapter 4 leading to the development of a non-homogeneous image spectrum analysis method used to extract the spectrum from radar images in chapter 5. This algorithm is derived and developed by this study and validated as a proper tool for non-homogeneous image spectrum analysis. In order to provide high quality in-situ data for calibration and assess the parameter uncertainty, a data quality-check program is developed in chapter 3. This data quality-check program contains both time series raw data checks and statistical parameters checks. Variations in data after applying the quality-check program are regarded as uncertainties of in-situ data and are used to assess the parameter uncertainty in the calibration process. In chapter 6, the uncertainties of wave remote sensing are evaluated by the uncertainty propagation method.
This study will show that the dominant uncertainty in remotely sensed wave heights results from the quality of in-situ data and that the minor uncertainty comes from the image spectrum analysis method. The formation of the calibration model produces yet less uncertainty. Thus, in order to improve the accuracy of remotely sensed data, the work of collecting high quality representative in-situ data for calibration must be emphasized alongside the choice of calibration model.
[1] Alpers, W., Bruening, C., 1986. On the relative importance of motionrelated contributions to the SAR imaging mechanism of ocean surface waves. IEEE Transactions on Geosciences and Remote Sensing GE-24, 873-885.
[2] Alpers, W., Hasselmann, K., 1982. Spectral signal to clutter and thermal noise properties of ocean wave imaging synthetic aperture radars. International Journal Remote Sensing 3, 423–446.
[3] Antoine, J.P., Vandergheynst, P., Bouyoucef K., Murenzi, R., 1995. Alternative representations of an image via the 2D wavelet transform: Application to character recognition. Proc. Conf. Visual Information Processing IV, 486-497.
[4] Barrick, D. E., 1977. Ocean surface current mapped by radar. Science 198, 138-144.
[5] Barrick, D.E., 1971. Theory of HF and VHF propagation across the rough sea: 2. Application to HF and VHF propagation above the sea. Radio Science 6, 527-533.
[6] Barrick, D.E., Weber, B.L., 1977. On the nonlinear theory for gravity waves on the ocean's surface. Part II: Interpretation and Applications. Journal of Physical Oceanography 7, 11-21.
[7] Beal, R. C., Gerling, T.W., Irvine, D.E., Monaldo, F.M., Tilley, D.G., 1986. Spatial variations of ocean wave directional spectra. Journal of Geophysics Research 91(C2), 2433-2449.
[8] Bendat, J.S., Piersol, A.G., 1986. Random data. Analysis and Measurement Procedures. John Wiley and Sons, New York.
[9] Bharucha-Reid, A.T., 1997. Elements of the Theory of Markov Processes and Their Applications. Dover Publications Inc, New York.
[10] Box, G.E.P., Jenkins, G.M., 1976. Time Series Analysis Forecasting and Control. Holden-Day, San Franciso, Calif.
[11] Chiuo, M.D., 2001.Accuracy Improvement on the Directional Buoy Measurement and Analysis. Diploma of Department of Hydraulics and Ocean Engineering of National Cheng Kung University, Tainan, Taiwan, ROC.
[12] Chui, C. K., 1992. An introduction to Wavelets. Academic Press San Diego.
[13] Clouet, J.F., Fouque, J.P., Postel, M., 1995. Spectral analysis randomly scattered signals using the wavelet transform, Wave Motion, Vol. 22, pp. 145-170.
[14] Collins, M.J., Huang, J., 1998. Uncertainties in the Estimating of ACF-Based Texture in Synthetic Aperture Radar Image Data, IEEE Transactions on Geosciences and Remote Sensing, Vol., 36, No.3, pp.940-949.
[15] Combes, J.M., Grossman, A., Ychamitchian, P., 1989. Wavelets. The Time-Frequency Methods and Phase Space. Springer-Verlag. Berlin.
[16] Cotton, P.D., Carter, D.J.T., 1994. Cross calibration of Topex, ERS-1 and Geosat wave heights. Journal Geophys Research 99, 25025-25033.
[17] Curran, P.J., Williamson, H.D., 1986. Sample size for ground and remotely sensed data. Remote sensing of Environment 20, pp.31-41.
[18] Daubechies, I., 1990. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory 36, 961-1005.
[19] Doong, D.J., Kao, C.C., Chuang, L.Z.H., Lin, H.P., 2003. Nearshore Wave Analysis Using SAR Images. China Ocean Engineering. (in press)
[20] Doong, D.J., Wu, L.C., Dankert, H., 2002, Dependence of Wave Remote Sensing and In-Situ Observations. Proceedings of 2002 German-Chinese Joint Symposium on Coastal and Ocean Engineering (JOINT 2002), Apr 10-12, Germany.
[21] Emery, W.J., Thomson, R.E., 1997. Data Analysis Methods in Physical Oceanography. Elsevier Science, New York.
[22] Farge, M., 1992. Wavelet transform and their applications to turbulence. Annual Review of Fluid Mechanics 24, 95–457.
[23] Flandrin, P., 1988. A time-frequency formulation of optimum detection. IEEE Transactions on Acoustics, Speech, and Signal Processing 36, 1377-1384.
[24] Gangeskar R., Grønlie Ø., 2000. Wave Height Measurement with a Standard Navigation Ship Radar -Results from Field Trials. Sixth International Conference on Remote Sensing for Marine and Costal Environments, Charleston, South Carolina.
[25] Georgakakos, K.P., Krajewski, W.F., 1995. Worth of radar data in real-time prediction of mean areal rainfall by nonadvective physically-based models. New Uncertainty Concepts in Hydrology and Water Resources, Ed. Z. W. Kundzewicz, Cambridge University Press, UK, 168-180.
[26] Gilhousen, D. B., 1988 Quality Control of Meteorological Data from Automated Marine Stations. Proceedings of Fourth International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography and Hydrology, American Meteorological Society.
[27] Goda, Y., 1999. A comporative review on the functional forms of directional wave spectrum. Coastal Engineering Journal 41, 1, 1-20.
[28] Goda, Y., Mizusawa, T., 1995. Spatial and temporal fluctuations of nearshore currents induced by directional random waves. Proc. Coastal Dynamics ’95, 269-280.
[29] Gommenginger, C.P., Ward, N.P., Fisher, G., Robinson, I.S., Boxall, S.R., 2000. Quantitative microwave backscatter measurements from the ocean surface using digital marine radar images. Journal of Atmospheric and Oceanic Technology 17, No. 5, 665-678.
[30] Gonzales, F.I., Beal, R.C., Brown, W.E., Releonibus, P.S., Sherman, J.S., Gowere, J.F.R., Lichy, D., Ross, D.B., Shuchman, R.A., 1979. Seasat synthetic aperture radar: Ocean wave detection capabilities, Science 204, 1418-1521.
[31] Graber, H.C., Heron, M.L., 1997. Wave Height Measurements From HF Radar. Oceanography, 10, 90-92.
[32] Grønlie, Ø., 1995. Microwave Radar Directional Wave Measurements - MIROS Results. Proceedings of the WMO/IOC Workshop on Operational Ocean Monitoring using Surface Based Radars, WMO report no 32, WMO/TD-No.694, Geneva.
[33] Gurgel K.W., Antonischki, G., Essen, H.H., Schlick, T., 1999. Wellen Radar (WERA): a new ground-wave HF radar for ocean remote sensing. Coastal Engineering 37, 219-234.
[34] Gurgel, K.W., Essen, H.H., Kingsley, S.P., 1999. High-Frequency Radars: Physical Limitations and Recent Developments. Coastal Engineering 37, 201–218.
[35] Harlan, J.A., Georges, T.M., Biggs, D.C., 1998. Comparison of over-the-horizon radar surface-current measurements in the Gulf of Mexico with simultaneous sea truth. Radio Sci., vol. 33, no. 4, pp. 1241-1247.
[36] Hasselmann, K., Hasselmann, S., 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. Journal of Geophysical Research 96, C6, 10713-10729.
[37] Hasselmann, K., R. K. Raney, W. J. Plant, W. Alpers, R. A. Shuchman, D. R. Lyzenga, C. L. Rufenach, and M. J. Tucker, 1985, Theory of synthetic aperture radar ocean imaging: A MARSEN view, Journal of Geophysics Research, 90, 4659-4686.
[38] Hatten, H., Seemann, J., Senet, C.M., Bezuglov, A., Veremjev, V., Ziemer, F., 2000. Determination of the near surface current field from Doppler shift of the coherent radar backscatter under grazing incidence, IGARSS'00, Conference Proceedings, Honolulu, Hawaii, 899-902.
[39] Hessner, K., Reichert, K., Dittmer, J., 1999. Coastal Application of a Wave Monitoring System based on a Nautical Radar. Proceedings of Geoscience and Remote Sensing Symposium, IGARSS '99, 500 –502.
[40] Hsu, M. K., Liu, A.K., Liu, C., 2000. A study of internal waves in the China Seas and Yellow Sea using SAR. Continental Shelf Research 20, 389-410.
[41] James, P.M., 1993. A Method for Locating Spikes in a Measured Times Series. Proceedings of the Second Symposium on Ocean Wave Measurement and Analysis (WAVES 93), pp. 388-393.
[42] Jensen, J.R., 1996. Introductory Digital Image Processing: A remote sensing perspective. 2nd Edition. NJ: Prentice-Hall.
[43] Kanevsky, M.B., 1993. On the Theory of SAR Ocean Wave Imaging. IEEE Transactions on Geoscience and Remote Sensing 31, No. 5, 1031-1035.
[44] Kao, C.C., Chuang, L.Z.H., Doong, D.J., 2002. Data Quality Control in a Coastal Hazard Warning System. Proceedings of 2002 German-Chinese Joint Symposium on Coastal and Ocean Engineering (JOINT 2002), Apr 10-12, Germany.
[45] Kao, C.C., Chuang, L.Z.H., Lin, Y.P., Lee, B.C., 1999. An Introduction to the Operational Data Buoy System in Taiwan. Proceedings of International. MEDCOAST Conference, Antalya, Turkey, 33-39.
[46] Kerbaol, V., Chapron, B., Vachon, P.W., 1998. Analysis of ERS-1/2 synthetic aperture radar wave mode imagettes. Journal of Geophysical Research, 103 (C4), 7833-7846.
[47] Krogstad, H.E., Barstow, S.F., 1999. Satellite Wave Measurements for Coastal Engineering Applications. Coastal Engineering 37, 283–308.
[48] Kundzewicz, Z.W., 1995. New Uncertainty Concepts in Hydrology and Water Resources. Cambridge University Press, UK.
[49] Kuo, Y.Y., Leu, L.G., Kao, I.L., 1999. Directional spectrum analysis and statistics obtained from ERS-1 SAR wave images, Ocean Engineering 26, 1125-1144.
[50] Lang, N.C., 1987. An Algorithm for the Quality Checking of Wind Speeds Measured at Sea Against Measured Wave Spectral Energy, IEEE Journal of Oceanic Engineering OE-12, 4, 560-567.
[51] Ledgard, L.J., Wyatt, L.R., 1997. Measurement of Ocean Waves Using the OSCR HF Radar System. Final Report to NERC, University of Sheffield.
[52] Lee P.H.Y., Barter, J.D., Beach, K.L., Hindman, C.L., Lake, B.M., Rungaldier, H., Shelton, J.C., Williams, A.B., Yee, R., Yuen, H.C., 1995. X band microwave backscattering from ocean waves. Journal of Geophysical Research 100, No. C2, 2591-2611.
[53] Leu, L.G., 1998. Spectrum analysis of ocean surface wave and coastal depths derived from datellite images. Ph.D. Thesis of Chiao Tung University, Hsinchu, Taiwan, ROC.
[54] Lewis, H.G., Brown, M., Tatnall, A.R.L., 2000. Incorporating uncertainty in land Cover classification from remote sensing imagery. Advance Space Research 26, 7, 1123-1126.
[55] Lillesand, T.M., Kiefer, R.W., 1994. Remote Sensing and Image Interpretation. New York: John Wiley and Sons.
[56] Lipa B.J., Barrick, D.E., Isaacson J., Lilleboe, P.M., 1990. CODAR wave measurements from a North Sea semisubmersible. IEEE Journal of Oceanic Engineering 15, 119-125.
[57] Lipa, B.J., Barrick, D.E., 1986. Extraction of Sea State From HF Radar Sea Echo: Mathematical Theory and Modeling. Radio Sci. 21, 81-100.
[58] Liu, A.K., Peng, C.Y., Schumacher, J.D., 1994. Wave-current interaction study in the Gulf of Alaska for detection of eddies by SAR, Journal of Geophysics Research, 99, 10075-10085.
[59] Liu, P.C., 1995. Wavelet spectrum analysis and ocean wind waves. In: Foufoula, G., Kumar, P. (Eds.), Wavelets in Geophysics. Academic Press, pp. 151–166.
[60] Lunetta, R.S., Congalton, R.G., Fenstermaker, L.K., Jensen, J.R., McGwire, K.C., Tinney, L.R., 1991. Remote Sensing and Geographic Information System Data Integration: Error Sources and Research Issues. Photogrammetric Engineering & Remote Sensing 57, 6, 677-687.
[61] Mallat, S.G., 1998. A Wavelet Tour of Signal Processing. Academic Press.
[62] Massel, S.R., 1996. Ocean Surface Waves: Their Physics and Prediction. World Scientific Publications, Singapore, New York.
[63] Massel, S.R., 2001. Wavelet analysis of processing ocean surface wave records. Ocean Engineering 28, 957-987.
[64] Meyer, Y., Jaffard, S., Rioul, O., Kelly, S.D., O’Brien, J.J., 1993. An introduction to wavelet analysis in oceanography and meteorology with application to the dispersion of Yanai waves. Monthly Weather Review 121, 2858–2866.
[65] Mori, N., Yasuda, T., 1994. Orthonormal wavelet analysis for deep-water breaking waves. Proc. 24th Conf. On Coastal Eng., ASCE, Kobe, Japan 1, 412–426.
[66] Mosleh, A., Siu, N., Smidts, C., Lui, C., 1995. Model Uncertainty: Its Characterization and Quantification. International Workshop Series on Advanced Topics in Reliability and Risk Analysis, Center for Reliability Engineering, University of Maryland.
[67] National Data Buoy Center (NDBC), 1996. Handbook of Automated Data Quality Control - Checks and Procedures of the National Data Buoy Center. NOAA, USA.
[68] Nieto, J.C., Gonzalez, R.S., Hessner, K., Reichert, K., Soares, C.G., 2000. Estimation of Sea State Directional Spectra by using Marine Radar Image of Sea Surface. Proceedings of 19th International OMAE Conference (OMAE 2000), New Orleans, Louisiana, USA.
[69] Nieto, J.C., Hessner, K., Reichert, K., Estimation of the Significant Wave Height with X-Band Nautical Radars, OMAE 1999.
[70] Nieto, J.C., Reichert, K., Dittmer, J., 1999. Use of nautical radar as a wave monitoring instrument. Coastal Engineering 37, 331–342.
[71] Nieto, J.C., Soares, C.G., 2000. Analysis of directional wave fields using X-band Navigation radar. Coastal Engineering 40, 375–391.
[72] Paduan, J.D., Graber, H.C., 1997. Introduction to High-Frequency Radar: Reality and Myth. Oceanography 10, 36-39.
[73] Peng, C.Y., Liu, A.K., 1995. SAR observations of interaction of ocean swell and Semidi Inlands in the Gulf of Alaska. International Journal Remote Sensing, 16, 1249-1260.
[74] Reichert, K, Nieto, J.C., Dittmer, J., 1998. WaMoS II: An operational Wave Monitoring System”, Proceedings of Oceanology International, Brighton.
[75] Reichert, K., Hessner, K., Nieto, J.C., Dittmer, J., 1999. WaMoSII: A Radar based Wave and Current Monitoring System. Proceedings of ISOPE'99, Breat.
[76] Robinson, I.S., 1985. Satellite Oceanography: An Introduction for Oceanographers and Remote-Sensing Scientists. John Wiley & Sons, New York.
[77] Robinson, I.S., Ward, N.P., Gommenginger, C.P., Tenorio, M.A., 1999. Coastal oceanography applications of digital image data from marine radar. JAOT 17, No. 5.
[78] Rodenas, J.A., Garello, R., 1998. Internal Wave Detection and Location in SAR Images using Wavelet Transform, IEEE Transactions on Geosciences and Remote Sensing, Vol., 36, No.5, pp. 1494-1507.
[79] Rodriguez, G., Soares, C.G., 1999. Uncertainty in the estimation of the slope of the high frequency tail of wave spectra. Applied Ocean Research 21, 207-213.
[80] Seemann J., Senet, C.M., Ziemer, F., 1997. A Method for Computing Calibrated Ocean Wave Spectra from Measurements with a Nautical X-Band Radar. Proceedings of OCEAN'97 500 Years of Ocean Explorations, Halifax, Canada.
[81] Seemann, J., Hatten, H., Senet, C.M., Ziemer, F., 1999. Estimation of Surface Wave Spectra from Nautical Radar Image Sequences with a Small Azimuthal Coverage. IEEE International Geoscience and Remote Sensing Symposium 28 June - 2 July, Hamburg, 1007-1009.
[82] Seemann, J., Senet, C.M., Hatten, H., Ziemer, F., Nieto, J.C. Dittmer, J., Reichert, K., 1998. Analysis of Long Duration Radar Image Sequences. Proceedings of the COST Conference, Provision and Engineering/Operational Application of Ocean Wave Spectra, 21-25 Sept. 1998, Paris, France.
[83] Seemann, J., Senet, C.M., Wolff, U., Ziemer, F., 2000. Nautical X-band radar image processing: monitoring of morphodynamic processes in coastal waters. OCEANS 2000 MTS/IEEE Conference and Exhibition , 1329 –1335.
[84] Senet C.M., Seemann, J., Ziemer, F., 1997. Current and Wave Observation from Coastal and Vessel Mounted Stations by Marine Radar. Proceedings of the Fourth International Conference on Remote Sensing for the Marine and Coastal Environments, Orlando, Florida.
[85] Senet, C.M., Seemann, J., Ziemer, F., 1997. An Iterative Technique to Determine the Near Surface Current Velocity from Time Series of Sea Surface Images. Proceedings of OCEAN'97 500 Years of Ocean Explorations, Halifax, Canada.
[86] Senet, C.M., Seemann, J., Ziemer, F., 2001. The Near-Surface Current Velocity Determined from Image Sequences of the Sea Surface. IEEE Transactions on Geoscience and Remote Sensing 39, 3.
[87] Shearman, E.D.R., Moorhead, M.D., 1988. Pisces: A coastal ground-wave radar for current, wind and wave mapping to 200km ranges. IGARRS'88 proceedings, 773-776.
[88] Shen, Z., Mei, L., 1994. Fine structure of wind wave analyzed with wavelet-transform. Journal of Physical Oceanography 24, 1085–1094.
[89] Steel, K.E., Marks, G.E., 1979. Detection of NDBO Wave Measurement Systems Malfunctions. Proceeding Oceans 79, 226-236.
[90] Stevens, C.L., Poulter, E.M., Smith, M.J., McGregor, J.A., 1999. Nonlinear Features in Wave-Resolving Microwave Radar Observations of Ocean Waves, IEEE Journal of Oceanic Engineering 24, No.4, pp.470-480.
[91] Tucker, M.J., 1984. Waves in Ocean Engineering, measurements, analysis, interpretation. Ellis Horwood series in marine science.
[92] Tucker, M.J., 1994. Waves in ocean engineering, measurement, analysis and interpretation. Ellis Horwood Series in Marine Science.
[93] Tuteur, F.B., 1989. Wavelet transformations in signal detection. In: Combes, J.M., Grossman, A., Ychamitchian, P. (Eds.), Wavelets. The Time-Frequency Methods and Phase Space. Springer-Verlag, Berlin, Heidelberg, 132–138.
[94] WAMDI Group, 1988. The WAM Model – A Third Generation Ocean Wave Prediction Model. Journal of Physical Oceanography 18, 1775-1810.
[95] Wang, J., 1999. Ocean Wave Monitoring at Tanshui Harbor by a Marine Radar, Report of IHMT, Taichung, Republic of China.
[96] Wu, S.Y., Liu, A.K., Tseng, W.Y., 1998. Wavelet analysis of satellite imagery on coastal oil spills. Proceedings of International Society of Offshore and Polar Engineers (ISOPE 98), 25-29.
[97] Wyatt, L.R., 1990. A relaxation method for integral inversion applied to HF radar measurement of the ocean wave directional spectra. Int. J. Remote Sens. 11. 1480-1499.
[98] Wyatt, L.R., 1998. Variability in wave spectra measured by HF radar. In: Edge, B.L. Helmsley, J.M. (Eds.), Ocean Wave Measurement and Analysis, Vol. 1, Proceedings of the 3rd International Symposium, Waves97, pp. 355-369.
[99] Wyatt, L.R., 2000. Limits to the inversion of HF radar backscatter for ocean wave measurement. Journal of Atmospheric and Oceanic Technology, 17.
[100] Wyatt, L.R., Ledgard, L.J., 1996. OSCR wave measurement - some preliminary results. IEEE Journal of Oceanic Engineering 21, 64-76.
[101] Wyatt, L.R., Thompson, S.P., Burton, R.R., 1999. Evaluation of High Frequency Measurement. Coastal Engineering 37, 259–282.
[102] Young, I.R., Rosenthal, W., Ziemer, F., 1985. A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. J. Geophys. Res. 90, 1049–1059.
[103] Yu, P.S., Tseng, T.Y., Doong, D.J., 1997. A Real-Time River Flow Forecasting Model. Journal of the Chinese Institute of Civil and Hydraulics Engineering 9, No. 1, 139-149. (in Chinese)
[104] Ziemer F., Rosenthal, W., 1987. On the transfer function of a shipborne radar for imaging ocean waves, Proc. IGARSS87 Ann- Arbor, Michigan, USA, 1559-1564.
[105] Ziemer, F., 1991. Directional spectra from shipboard navigation radar during LEWEX. Directional Ocean Wave Spectra, edited by R.C. Beal, The Johns Hopkins University Press, Baltimore U.S.A., 80-84.
[106] Ziemer, F., 1995. An Instrument for the survey of ocean wave field. Proceedings for the International Workshop on Remote Sensing for Coastal and Marine Engineering. Hiroshima (Japan) 17-18 November.
[107] Ziemer, F., Dittmer, J., 1994. A System to Monitor Ocean Wave Fields. Proceedings of the OCEANS'94 October 13 – 16, 28 - 31.
[108] Ziemer, F., Günther, H., 1994. A System to Monitor Ocean Wave Fields. Proceedings of the Second International Conference on Air-Sea Interaction and Meteorology and Oceanography of the Coastal Zone. Lisbon, Portugal, September 22-27