簡易檢索 / 詳目顯示

研究生: 李明鴻
Li, Ming-Hong
論文名稱: 混合頻率調變連續波與頻率偏移調變雷達以改善多目標量測下之可解析距離
Multi-target Monitoring for Distinguishable Range Improvement Using a Hybrid FMCW-FSK Radar
指導教授: 楊慶隆
Yang, Ching-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 61
中文關鍵詞: 頻率調變連續波雷達頻率偏移多人距離解析度短距離定距生理監測
外文關鍵詞: FMCW radar, FSK radar, multi-target monitoring, range resolution enhancement, short-range localization, vital sign detection
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出混合頻率調變連續波與頻率偏移調變之雷達將發揮各自的雷達特性,以達成使用相同的頻寬下之更高的可解析距離,使得雷達的頻譜使用效率有所改進,所以於未來物聯網應於在醫院、家庭之照護等場合時,不再佔據大量頻寬,壓縮其他感測器的可使用頻寬,使得採用雷達作為長期生理訊號監測的可能性大幅提升。
    於理論分析可得出,本系統提出之架構不再直接分離兩個目標的拍頻訊號,而是轉換至都卜勒頻率的維度進行訊號的距離分析,所以不再仰賴較大的頻寬以改善距離解析度,因此能夠達成更好的可解析距離。透過數值模擬軟體可以發現本方法於量測生理訊號,如:呼吸、心跳等微小訊號時,仍能透過其產生的都卜勒頻率對應之相位差來計算距離,並於初步模擬中討論此方法的侷限性,以及於理論得出之總頻寬的使用與可解析距離之間的比較。接著將在實驗中,驗證此方法的實際應用情況,首先將以兩個馬達乘載金屬片作為目標以替代人體的生理訊號,以利初期實驗的可重複性以及正確性,此方法的可行性被驗證過後,將利用馬達的可重複性,來驗證理論公式得出之總頻寬的使用與可解析距離之關係。其後進入多人實驗,可以發現人體實際的呼吸、心跳訊號都能夠對應出待測者的距離,接著就可以利用都卜勒頻率對應的距離來區分出訊號。最終從實驗數據,可以得出本系統改善了目標間之最小距離,從100 cm下降至約50 cm,改善之比例約為1.8倍,相較於過往文獻改善解析度的比例,有著明顯的成長,而量測到的心跳訊號之錯誤率小於3%,而量測距離的正確率則大於90%。

    This thesis presents a novel waveform, which is hybrid frequency modulated continuous wave (FMCW) and frequency shift keying (FSK) radar to improve the distinguishable range in FMCW system. For traditional FMCW radar, the range resolution is inversely proportional to the bandwidth of radar, which becomes a bottleneck when the bandwidth is limited. However, the proposed approach generates additional overlapped chirp waveform, and therefore the FSK theory is used. Then, the targets in the same range bin can be distinguished in the Doppler frequency domain. The corresponded phase difference can be calculated, and so the distances of the targets. Hence, the targets are differentiated by the distance through the proposed method. Because the measured dimension is changed from the beat frequency to the Doppler frequency, the fundamental theoretical limit of range resolution is overcome and better spectrum efficiency is achieved. Therefore, the proposed waveform realizes better spectrum efficiency and lowers the complexity of the radar system.
    In this thesis, the theory of the proposed method is derived, and the mathematic simulation is carried out to exhibit the feasibility under the premise that targets have different Doppler frequencies. Also, the effect of central frequency difference is demonstrated, so the distinguishable range can be improved if the central frequency difference is increased. For time-frequency analysis of the Doppler frequency, the wavelet transform is applied to achieve better the frequency resolution, and the choice of mother wavelet is displayed. The two-subject experiment is performed to verify the proposed method and the effect of the central frequency difference. From the experimental results, the minimum distance between targets is around 0.5 m under 150 MHz bandwidth, corresponded to 1 m range resolution. That is, the ration of improvement is 1.85, which is larger than previous works. Also, the accuracies of heartbeat frequency and distance are 97% and 90%, respectively.

    摘要 I EXTENDED SUMMARY II ACKNOWLEDGEMENT(誌謝) VII 目錄 VIII 表目錄 XI 圖目錄 XII 縮寫總表 XV 第一章 緒論 1 1.1 研究背景與目的 1 1.2 文獻回顧 2 1.2.1 連續波雷達訊號之訊號解調 3 1.2.2 頻率偏移調變雷達 7 1.2.3 頻率調變連續波雷達 9 1.3 研究動機與目標 12 1.4 論文架構 14 1.5 研究貢獻 15 第二章 混合頻率調變與頻率偏移調變雷達之理論分析 16 2.1 頻率偏移調變雷達量測原理 16 2.2 頻率調變連續波雷達量測原理 18 2.2.1 頻率調變連續波雷達之距離解析度分析 18 2.2.2 頻率調變連續波雷達應用於單目標生理訊號量測之分析 19 2.3 混合頻率調變頻率偏移調變雷達之原理及分析 20 第三章 雷達系統之數值模擬分析 23 3.1 理想的生理訊號生成以及其所在之距離 23 3.2 線性頻率調變之波型設定 24 3.3 拍頻訊號之處理 26 3.4 都卜勒頻率組成之分析與距離計算結果 26 3.5 中心頻率差變化的結果與交互干擾之討論 29 3.6 頻寬對距離標準差之影響 31 第四章 混合頻率調變以及頻率偏移調變雷達之系統架構 33 4.1 雷達系統架構與子電路 33 4.2 調變訊號控制以及訊號取樣 35 4.3 生理訊號以及定距之參考設備 36 4.4 具重複性之使用目標 36 第五章 馬達與人體之生理訊號量測結果 38 5.1 距離偏移之校正 38 5.2 頻率飄移變因確認 39 5.3 雙馬達之實驗結果與中心頻率之影響 40 5.4 人體實驗之結果 46 5.4.1 母小波之選擇與比較 48 5.4.2 雙人實驗結果 51 5.4.3 文獻比較 53 第六章 結論與未來展望 55 6.1 結論 55 6.2 未來展望 56 參考資料 57

    [1] J. C. Lin, "Noninvasive microwave measurement of respiration," Proceedings of the IEEE, vol. 63, no. 10, pp. 1530-1530, 1975.
    [2] J. C. Lin, J. Kiernicki, M. Kiernicki, and P. B. Wollschlaeger, "Microwave apexcardiography," IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 6, pp. 618-620, 1979.
    [3] H. F. Krous et al., "Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach," Pediatrics, vol. 114, no. 1, pp. 234-238, 2004.
    [4] R. W. Byard, "Sudden infant death syndrome: Definitions," 2018.
    [5] C. Li, J. Lin, and Y. Xiao, "Robust overnight monitoring of human vital signs by a non-contact respiration and heartbeat detector," in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006: IEEE, pp. 2235-2238.
    [6] W. Massagram, V. M. Lubecke, and O. Boric-Lubecke, "Microwave non-invasive sensing of respiratory tidal volume," in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009: IEEE, pp. 4832-4835.
    [7] A. Singh, S. U. Rehman, S. Yongchareon, and P. H. J. Chong, "Multi-resident Non-Contact Vital Sign Monitoring using Radar: A Review," IEEE Sensors Journal, 2020.
    [8] J. Wang, T. Karp, J.-M. Muñoz-Ferreras, R. Gómez-García, and C. Li, "A spectrum-efficient FSK radar technology for range tracking of both moving and stationary human subjects," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp. 5406-5416, 2019.
    [9] C. Li and J. Lin, "Random body movement cancellation in Doppler radar vital sign detection," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3143-3152, 2008.
    [10] B.-K. Park, V. Lubecke, O. Boric-Lubecke, and A. Host-Madsen, "Center tracking quadrature demodulation for a Doppler radar motion detector," in 2007 IEEE/MTT-S International Microwave Symposium, 2007: IEEE, pp. 1323-1326.
    [11] J. Wang, X. Wang, L. Chen, J. Huangfu, C. Li, and L. Ran, "Noncontact distance and amplitude-independent vibration measurement based on an extended DACM algorithm," IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 1, pp. 145-153, 2013.
    [12] F.-K. Wang et al., "A novel vital-sign sensor based on a self-injection-locked oscillator," IEEE transactions on microwave theory and techniques, vol. 58, no. 12, pp. 4112-4120, 2010.
    [13] M. Nosrati, S. Shahsavari, S. Lee, H. Wang, and N. Tavassolian, "A concurrent dual-beam phased-array Doppler radar using MIMO beamforming techniques for short-range vital-signs monitoring," IEEE Transactions on Antennas and Propagation, vol. 67, no. 4, pp. 2390-2404, 2019.
    [14] S. Yue, H. He, H. Wang, H. Rahul, and D. Katabi, "Extracting multi-person respiration from entangled RF signals," Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 2, pp. 1-22, 2018.
    [15] S. M. Islam, E. Yavari, A. Rahman, V. M. Lubecke, and O. Boric-Lubecke, "Separation of respiratory signatures for multiple subjects using independent component analysis with the JADE algorithm," in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018: IEEE, pp. 1234-1237.
    [16] M. Zakrzewski, A. Vehkaoja, A. S. Joutsen, K. T. Palovuori, and J. J. Vanhala, "Noncontact respiration monitoring during sleep with microwave Doppler radar," IEEE Sensors Journal, vol. 15, no. 10, pp. 5683-5693, 2015.
    [17] Z. Gu et al., "Blind separation of Doppler human gesture signals based on continuous-wave radar sensors," IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 7, pp. 2659-2661, 2019.
    [18] A. Vergara, N. Petrochilos, O. Boric-Lubecke, A. Host-Madsen, and V. Lubecke, "Blind source separation of human body motion using direct conversion Doppler radar," in 2008 IEEE MTT-S International Microwave Symposium Digest, 2008: IEEE, pp. 1321-1324.
    [19] Z. Gu et al., "Remote blind motion separation using a single-tone SIMO Doppler radar sensor," IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 1, pp. 462-472, 2018.
    [20] D.-M. Chian, C.-K. Wen, F.-K. Wang, and K.-K. Wong, "Signal Separation and Tracking Algorithm for Multi-Person Vital Signs by Using Doppler Radar," IEEE Transactions on Biomedical Circuits and Systems, vol. 14, no. 6, pp. 1346-1361, 2020.
    [21] Y. Zhang, M. Amin, and F. Ahmad, "Time-frequency analysis for the localization of multiple moving targets using dual-frequency radars," IEEE Signal Processing Letters, vol. 15, pp. 777-780, 2008.
    [22] C. Gu and J. Lien, "A two-tone radar sensor for concurrent detection of absolute distance and relative movement for gesture sensing," IEEE sensors letters, vol. 1, no. 3, pp. 1-4, 2017.
    [23] Y. Yuan, C. Lu, A. Y.-K. Chen, C.-H. Tseng, and C.-T. M. Wu, "Multi-target concurrent vital sign and location detection using metamaterial-integrated self-injection-locked quadrature radar sensor," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp. 5429-5437, 2019.
    [24] J.-M. Muñoz-Ferreras, J. Wang, Z. Peng, C. Li, and R. Gómez-García, "Fmcw-radar-based vital-sign monitoring of multiple patients," in 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), 2019, vol. 1: IEEE, pp. 1-3.
    [25] G. Wang, C. Gu, T. Inoue, and C. Li, "A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2812-2822, 2014.
    [26] G.-W. Fang, C.-Y. Huang, and C.-L. Yang, "Simultaneous detection of multi-target vital signs using EEMD algorithm based on FMCW radar," in 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), 2019, vol. 1: IEEE, pp. 1-4.
    [27] S. Kim and K.-K. Lee, "Low-complexity joint extrapolation-MUSIC-based 2-D parameter estimator for vital FMCW radar," IEEE Sensors Journal, vol. 19, no. 6, pp. 2205-2216, 2018.
    [28] H. Lee, B.-H. Kim, J.-K. Park, and J.-G. Yook, "A novel vital-sign sensing algorithm for multiple subjects based on 24-GHz FMCW Doppler radar," Remote Sensing, vol. 11, no. 10, p. 1237, 2019.
    [29] H. Lee, B.-H. Kim, J.-K. Park, S. W. Kim, and J.-G. Yook, "A resolution enhancement technique for remote monitoring of the vital signs of multiple subjects using a 24 GHz bandwidth-limited FMCW radar," IEEE Access, vol. 8, pp. 1240-1248, 2019.
    [30] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. Kovacs, "Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 838-848, 2004.
    [31] T. Wang, P. Li, R. Wang, Z. Sheng, and L. Huang, "A Software-Synchronization Based, Flexible, Low-Cost FMCW Radar," IEEE Access, vol. 8, pp. 115582-115592, 2020.
    [32] J.-M. Muñoz-Ferreras, G. Wang, C. Li, and R. Gómez-García, "Mitigation of stationary clutter in vital-sign-monitoring linear-frequency-modulated continuous-wave radars," IET Radar, Sonar & Navigation, vol. 9, no. 2, pp. 138-144, 2015.
    [33] Automotive Adaptive Cruise Control Using FMCW Technology [Online]. Available: https://www.mathworks.com/help/radar/ug/automotive-adaptive-cruise-control-using-fmcw-technology.html.
    [34] M. Alizadeh, G. Shaker, J. C. M. De Almeida, P. P. Morita, and S. Safavi-Naeini, "Remote monitoring of human vital signs using mm-Wave FMCW radar," IEEE Access, vol. 7, pp. 54958-54968, 2019.
    [35] X. Lu, H. Liu, J. Kang, and J. Cheng, "Wavelet frequency spectrum and its application in analyzing an oscillating chemical system," Analytica chimica acta, vol. 484, no. 2, pp. 201-210, 2003.
    [36] H.-R. Chuang, H.-C. Kuo, and C.-C. Chou, "A Simple Muscle-sphere Model to Approximate the Radar Cross Section of the Man Heart for Vital-Signs Detection Range Problem At Different RF Frequencies," in 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), 2019, vol. 1: IEEE, pp. 1-3.
    [37] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, "High-Sensitivity Software-Configurable 5.8-GHz Radar Sensor Receiver Chip in 0.13-$mu $ m CMOS for Noncontact Vital Sign Detection," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1410-1419, 2010.
    [38] Biopac MP 36 for ECG Acquisition System [Online]. Available: https://www.biopac.com/product/upgrade-to-mp36-system/.
    [39] BOSCH GLM 30 [Online]. Available: https://media.bosch-pt.com.tw/binary/ocsmedia/optimized/full/o233770v21_160992A297_201605.pdf.
    [40] Delta Servo Motor: ASD-A2-0121-L [Online]. Available: https://www.deltaww.com/zh-TW/products/Servo-Systems-AC-Servo-Motors-and-Drives/14.
    [41] Delta Servo Motor: ASD-B3-0121-L [Online]. Available: https://www.deltaww.com/zh-TW/products/Servo-Systems-AC-Servo-Motors-and-Drives/4818.
    [42] OPtex Fa Laser Displacement Sensor cd4a-n [Online]. Available: https://ramcoi.s3.us-east-2.amazonaws.com/Optex/CD4/optex_fa_cd4_series_brochure-compressed.pdf.
    [43] Agilent Technologies PNA-L N5234A [Online]. Available: https://www.keysight.com/tw/zh/product/N5234A/pnal-microwave-network-analyzer-435-ghz.html.
    [44] F. Ahmad, M. G. Amin, and P. D. Zemany, "Dual-frequency radars for target localization in urban sensing," IEEE transactions on aerospace and electronic systems, vol. 45, no. 4, pp. 1598-1609, 2009.
    [45] M. Li and J. Lin, "Wavelet-transform-based data-length-variation technique for fast heart rate detection using 5.8-GHz CW Doppler radar," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 1, pp. 568-576, 2017.
    [46] Continuous 1-D wavelet transform [Online]. Available: https://www.mathworks.com/help/wavelet/ref/cwt.html#namevaluepairarguments.
    [47] Q. Jiang and B. W. Suter, "Instantaneous frequency estimation based on synchrosqueezing wavelet transform," Signal Processing, vol. 138, pp. 167-181, 2017.

    下載圖示 校內:2024-08-18公開
    校外:2024-08-18公開
    QR CODE