簡易檢索 / 詳目顯示

研究生: 劉建宣
Liu, Chien-Hsuan
論文名稱: 配電系統最佳太陽能電池智慧變流器容量規劃與電壓控制策略
Optimal Solar Photovoltaic Smart Inverter Capacity Planning and Voltage Control Strategy for Distribution System
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 71
中文關鍵詞: 太陽能系統虛功控制系統電壓控制系統裝置容量最佳化
外文關鍵詞: Photovoltaic (PV) system, reactive power system, voltage control system, optimization capacity
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應全球暖化、環境汙染及天災等因素,再生能源日益普及,尤其是太陽光伏發電系統被廣為應用,但高滲透率的太陽光伏發電系統勢必會對配電系統電壓造成衝擊,進而限制太陽光伏發電系統饋入系統量。安裝智慧變流器與使用適當電壓控制策略,能有效的抑制過電壓問題及減少線路損失,減少電壓衝擊並提高太陽光伏饋入系統量。
    為了能有效利用太陽光伏系統之變流器,本論文提出最佳化太陽光伏系統之變流器裝置容量規劃,考量其投資成本並搭配虛功交易機制,建議合適的變流器之裝置容量,同時提出一配電系統兩階段電壓控制策略,用於具高太陽光伏滲透率的系統,使系統電壓能維持在法定的規範內並線路損失達到最小,進而減少太陽光伏系統的饋入削減量,提高太陽光伏系統的利用率,提升整體的經濟效益。本文所提的兩階段電壓控制策略,主要透過有載切換開關變壓器、電容器以及太陽光伏系統之變流器虛功控制達到電壓控制之目的,並限制一天內有載切換開關變壓器及電容器的使用次數。
    本論文為驗證電壓控制策略及最佳化裝置容量策略的可行性,使用實際的負載資料及太陽光伏發電量分析其效益,並進一步與文獻現有方法比較。由數值模擬結果可知,所提之方法相比於文獻現有方法更能有效地在減少有載切換開關變壓及電容器的使用下達到電壓控制之目的,提高太陽能光伏系統的饋入量,減少之線路損失亦更為顯著。此外,透過最佳化變流器裝置容量策略,更能再進一步提高太陽光伏系統的饋入量。

    Because of global warming, environmental pollution, and natural disasters, renewable energy is commonly used nowadays, particularly a photovoltaic (PV) system. However, the high penetration of a PV system considerably affects the voltage of the distribution system and restricts the feed-in power of PV systems. Therefore, a suitable voltage control strategy is required to mitigate the overvoltage problem, minimize power loss, and increase the feed-in power of PV systems.
    The thesis proposes an optimization strategy to determine the optimal capacity of the PV inverter, considering the investment cost of the PV inverter and reactive power transaction. For specified PV inverter capacities, this thesis proposes a two-stage voltage control strategy for the distribution system in a high PV penetration system to regulate the system voltage within an acceptable range, minimize power loss, and minimize the active power curtailment of PV systems. The proposed voltage control strategy is achieved using a transformer on-load tap changer (OLTC) and capacitor bank, and through the reactive power control of a PV inverter. The operation numbers of the OLTC and capacitor bank are limited to one day because of the effects on their lifetime.
    To verify the feasibility of the proposed optimization capacity of the PV inverter and voltage control strategy, the real load and PV generation data are used in this thesis and the control strategy is compared with the reference methods. The simulation results show that the proposed voltage control strategy can mitigate the overvoltage problem and increase the feed-in power of the PV system more effectively. The power loss and operation numbers of the OLTC and capacitor bank are also reduced considerably. The proposed optimal inverter capacity strategy can further minimize the active power curtailment of PV systems effectively.

    摘要 I ABSTRACT II 誌謝 IV Table of Contents V List of Figures VII List of Tables IX Chapter 1. INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Literature Review 2 1.3 Research Objective and Methods 6 1.4 Thesis Organization 8 Chapter 2. SYSTEM DESCRIPTION AND MODELING 9 2.1 Introduction 9 2.2 Overall System Structure 9 2.3 System Models 10 2.3.1 OLTC Transformer 10 2.3.2 Capacitor Bank 11 2.3.3 PV Inverter 12 2.4 Electricity Tariff 13 2.4.1 Subsidy Tariff for PV 13 2.4.2 Time of Use Tariff 14 2.4.3 Reactive Power Transaction and Price 14 Chapter 3. THE PROPOSED VOLTAGE CONTROL STRATEGY AND OPTIMIZATION METHOD 16 3.1 Introduction 16 3.2 PV Inverter Sizing Strategy 16 3.2.1 Formulation of Inverter Capacity Optimization 16 3.2.2 Procedure of the PV Inverter Sizing Strategy 18 3.3 Procedure of the Voltage Control Strategy 20 3.3.1 First stage scheduling 21 3.3.2 Second Stage Scheduling 23 3.4 DP for Scheduling OLTC and Capacitor Banks 24 3.5 SaDE Method for PV inverter reactive power output and capacity determination 25 Chapter 4. SIMULATION RESULTS 29 4.1 Introduction 29 4.2 Test System 29 4.3 Typical-Day Performance Analysis of the Proposed Voltage Control Strategy 32 4.3.1 Simulation for a Day in Spring 34 4.3.2 Simulation for a Summer Day 40 4.3.3 Simulation on a Fall Day 47 4.3.4 Simulation on a Winter Day 54 4.4 Typical-Day Performance Analysis of Inverter Sizing Strategy 60 4.5 Summary 62 Chapter 5. CONCLUSION AND FUTURE PROSPECTS 64 5.1 Conclusion 64 5.2 Future Prospects 65 REFERENCES 67

    [1] 台灣電力股份有限公司, 國家再生能源未來展望, Aug. 2015. [Online]. Available:http://www.taipower.com.tw/content/new_info/new_info-b34.aspx?LinkID=8 . [Accessed 13 Jun. 2016]
    [2] G. Mokhtari, A. Ghosh, G. Nourbakhsh, and G. Ledwich, “Smart obust Resources Control in LV Network to Deal With Voltage Rise Issue,” IEEE Transactions on Sustainable Energy, vol. 4, no. 4, pp. 1043-1050, Oct. 2013.
    [3] G. Mokhtari, G. Nourbakhsha, F. Zareb, and A. Ghosha, “Overvoltage Prevention in LV Smart Grid Using Customer Resources Coordination.” Energy and Building, vol. 61, pp. 387-395, Jun. 2013.
    [4] D. C. Garcia, A. L. F. Oliveira, O. A. Fernandes, and F. A. Nascimento, “Voltage Unbalance Numerical Evaluation and Minimization,” Electric Power System Researcher, vol. 79, no. 10, pp. 1441-1445, Oct. 2009.
    [5] P. Trichakis, P. C. Taylor, P. F. Lyons, and R. Hair, “Predicting the Technical Impacts of High Levels of Small-Scale Embedded Generators on Low-Voltage Networks,” IET Renewable Power Generation, vol. 2, no. 4, pp. 249-262, Dec. 2008.
    [6] N. K. C. Nair and L. Jing, “Power Quality Analysis for Building Integrated PV and Micro Wind Turbine in New Zealand,” Energy and Building, vol. 58, pp. 302-309, Mar. 2013.
    [7] R. H. Liang and C. K. Cheng, “Dispatch of Main Transformer ULTC and Capacitors in a Distribution System,” IEEE Transactions on Power Delivery, vol. 16, no. 4, pp. 625-630, Oct. 2001.
    [8] J. Y. Park, S. R. Nam, and J. K. Park, “Control of a ULTC Considering the Dispatch Schedule of Capacitors in a Distribution System,” IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 755-761, May. 2007.
    [9] T. Senjyu, Y. Miyazato, A. Yona, N. Urasaki, and T. Funabashi, “Optimal Distribution Voltage Control and Coordination With Distributed Generation,” IEEE Transactions on Power Delivery, vol. 23, no. 2, pp. 1236-1242, Apr. 2008.
    [10] H. T. Yang and J. T. Liao, “MF-APSO-Based Multiobjective Optimization for PV System Reactive Power Regulation,” IEEE Transaction on Sustainable Energy, vol. 6, no. 4, pp. 1346-1355, Oct. 2015.
    [11] H. G. Yeh, D. F. Gayme, and S. H. Low, “Adaptive VAR Control for Distribution Circuits With Photovoltaic Generators,” IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1656-1663, Aug. 2012.
    [12] E. Demirok, P. C. Gonzalez, K. H. B. Frederiksem, D. Sera, P. Rodriguez, and R. Teodorescu, “Local Reactive Power Control Methods for Overvoltage Prevention of Distributed Solar Inverters in Low-Voltage Grids,” IEEE Journal of Photovoltaics, vol. 1, no. 2, pp. 174-182, Dec. 2011.
    [13] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Distributed Control of Reactive Power Flow in a Radial Distribution Circuit with High Photovoltaic Penetration,” IEEE PES General Meeting, pp. 1-6, Jul. 2010.
    [14] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Local Control of Reactive Power by Distributed Photovoltaic Generators,” IEEE International Conference on Smart Grid Communications, pp. 79-84, Oct. 2010.
    [15] A. Momeneh, M. Castilla, J. Miret, P. Marti, and M. Velasco, “Comparative Study of Reactive Power Control Methods for Photovoltaic Inverters in Low Voltage Grids,” IET Renewable Power Generation, vol. 10, no. 3, pp. 310-318, Mar. 2016.
    [16] R. Tokoski, L. A. C. Lopes, and T. K. M. El-Fouly, “Coordinated Active Power Curtailment of Grid Connected PV Inverters for Overvoltage Prevention,” IEEE Transactions on Sustainable Energy, vol. 2, no. 2, pp. 139-147, Apr. 2011.
    [17] H. Sugihara, K. Yokoyama, K. Tsuji, and T. Funaki, “Economic and Efficient Voltage Management Using Customer-Owned Energy Storage Systems in a Distribution Network With High Penetration of Photovoltaic Systems,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 102-111, Feb. 2013.
    [18] O. M. Toledo, D. O. Filho, A. S. A. C. Dinim, J. H. Martinsm and M. H. M. Vale, “Methodology for Evaluation of Grid-Tie Connection of Distributed Energy Resources-Case Study with Photovoltaic and Energy Storage,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1132-1139, May. 2013.
    [19] J. Tant, F. Geth, D. Six, P. Tant, and J. Driesen, “Multiobjective Battery Storage to Improve PV Integration in Residential Distribution Grids,” IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 182-191, Jan. 2013.
    [20] G. Mokhtari, G. Nourbakhsh, and A. Ghosh, “Smart Coordination of Energy Storage Units (ESUs) for Voltage and Loading Management in Distribution Networks,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4812-4820, Nov. 2013.
    [21] M. J. E. Alam, K. M. Muttaqi, and D. Sutanto, “Mitigation of Rooftop Solar PV Impacts and Evening Peak Support by Managing Available Capacity of Distributed Energy Storage Systems,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 3874-3884, Nov. 2013.
    [22] M. Oshiro, K. Tanaka, T. Senjyu, S. Toma, A. Yona, A. Y. Saber, T. Funabashi, and C. H. Kim, “Optimal Voltage Control in Distribution Systems Using PV Generators,” Electrical Power and Energy System, vol. 33, no. 3, pp. 485-492, Mar. 2011.
    [23] Z. Ziadi, M. Oshiro, T. Senjyu, A. Yona, N. Urasaki, T. Funabashi, and C. H. Kim, “Optimal Voltage Control Using Inverters Interfaced with PV Systems Considering Forecast Error in a Distribution System,” IEEE Transactions Sustainable Energy, vol. 5, no. 2, pp. 682-690, Apr. 2014.
    [24] Y. P. Agalgaonkar, B. C. Pal, and R. A. Jabr, “Distribution Voltage Control Considering the Impact of PV Generation on Tap Changers and Autonomous Regulators,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 182-192, Jan. 2014.
    [25] Y. J. Kim, S. J. Ahn, P. I. Hwang, G. C. Pyo, and S. I. Moon, “Coordinated Control of a DG and Voltage Control Devices Using a Dynamic Programming Algorithm,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 42-51, Feb. 2013
    [26] S. Chen, W. Hu, C. Su, X. Zhang, and Z. Chen, “Optimal Reactive Power and Voltage Control in Distribution Networks with Distributed Generators by Fuzzy Adaptive Hybrid Particle Swarm Optimisation Method,” IET Generation, Transmission & Distribution, vol. 9, no. 11, pp. 1096-1103, Aug. 2015.
    [27] Z. Ziadi, S. Taira, M. Oshiro, and T. Funabashi, “Optimal Power Scheduling for Smart Grids Considering Controllable Loads and High Penetration of Photovoltaic Generation,” IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2350-2359, Sep. 2014.
    [28] R. A. Jabr, “Minimum Loss Operation of Distribution Networks with Photovoltaic Generation,” IET Renewable Power Generation, vol. 8, no. 1, pp. 33-44, Jan. 2014.
    [29] M. Farivar, C. R. Clarke, S. H. Low, and K. M. Chandy, “Inverter VAR Control for Distribution Systems with Renewables,” IEEE International Conference on Smart Grid Communications, pp. 457-462, Oct. 2011.
    [30] E. Rivas, J. C. Burgos, and J. C. G. Prada, “Vibration Analysis Using Envelope Wavelet for Detecting Faults in the OLTC Tap Selector,” IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1629-1636, Jul, 2010.
    [31] 台灣電力股份有限公司, 特高壓電力設備維護要點, Mar. 2006. [Online]. Available: http://www.taipower.com.tw/content/UHV/UHV01-1.aspx?UType=8&sid=26. [Accessed 8 Jan. 2016]
    [32] M. C. Russell, “The Promise of Reliable Inverters for PV Systems: The Microinverter Solution,” June 2010. [Online]. Available: http://www.greentechmedia.com/articles/read/the-promise-of-reliable-inverters-for-pv-systems-the-micro-inverter-solutio. [Accessed 8 Jan. 2016]
    [33] R. Margolis, “A Review of PV Inverter Technology Cost and Performance Projections,” Jan. 2006. [Online]. Available: http://www.nrel.gov/docs/fy06osti/38771.pdf. [Accessed 8 Jan. 2016]
    [34] 經濟部能源局, 中華民國一百零五年再生能源躉購費率及其計算公式, Dec. 2015. [Online]. Available: https://web3.moeaboe.gov.tw/ECW/populace/Law/Content.aspx?menu_id=2977. [Accessed 2 Mar. 2016]
    [35] 台灣電力股份有限公司,電價表, Oct. 2014. [Online]. Available: http://www.taipower.com.tw/UpFile/_userfiles/file/1041001%E8%A9%B3%E7%B4%B0%E9%9B%BB%E5%83%B9%E8%A1%A8.pdf. [Accessed 2 Mar. 2016]
    [36] A. Rabiee, H. A. Shayanfar, and N. Amjady, “Reactive Power Pricing,” IEEE Power and Energy Magazine, vol. 7, no. 1, pp. 18-32, Feb. 2009.
    [37] M. De and S. K. Goswami, “Optimal Reactive Power Procurement with Voltage Stability Consideration in Deregulated Power System,” IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2078-2086, Sep. 2014.
    [38] S. X. Chen, Y. S. F. Eddy, H. B. Gooi, M. Q. Wang, and S. F. Lu, “A Centralized Reactive Power Compensation System for LV Distribution Networks,” IEEE Transactions on Power Systems, vol. 30, no.1, pp. 274-284, Jan. 2015.
    [39] R. E. Bellman, “The Theory of Dynamic Programming,” Jul. 1954. [Online]. Available: https://www.rand.org/content/dam/rand/pubs/papers/2008/P550.pdf. [Accessed 12 Jan. 2016].
    [40] R. Storn and K. Price, “Differential Evolution- A Simple and Efficient Heuristic for Global Optimization over Continuous Space,” Journal of Global Optimization. vol. 11, no. 4, pp. 341-359, Dec. 1997.
    [41] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646-657, Dec. 2006.
    [42] IEEE Power & Energy Society, “Distribution Test Feeders,” 1992. [Online]. Available: https://ewh.ieee.org/soc/pes/dsacom/testfeeders. [Accessed 12 Jan. 2016].
    [43] S.A. Pourmousavi, A. S. Cifala, and M. H. Nehrir, “Impact of High Penetration of PV Generation on Frequency and Voltage in a Distribution Feeder,” North America Power Symposium (NAPS), pp. 1-8, Sep. 2012.
    [44] PVinsights Grid the world, “Retailer Price-Grid Tie Inverter 2000W+Weekly Retailer Price,” Jan. 2016. [Online]. Available: http://pvinsights.com/RetailerPrice.php. [Accessed 12 Jan. 2016].

    無法下載圖示 校內:2021-07-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE