簡易檢索 / 詳目顯示

研究生: 飛瑞
Adriyanto, Feri
論文名稱: 以溶液法製備氧化鋅奈米柱、鈦酸鋇及聚(4-乙烯基苯酚)於薄膜電晶體上之應用
Solution-Processed ZnO Nanorods, Barium Zirconate Titanate and Poly(4-vinylphenol) for Thin Film Transistor Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 76
中文關鍵詞: 氧化鋅奈米柱塑膠基板溶液法製程薄膜電晶體並五苯有機TFTs鈦氧化鋯鋇記憶體聚(4-乙烯基苯酚)
外文關鍵詞: ZnO, nanorods, plastic substrate, solution process, thin film transistor, pentacene-based organic TFTs, barium zirconate titanate, memory, poly(4-vinylphenol)
相關次數: 點閱:187下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在奈米電子元件的製造上,氧化鋅奈米柱的尺寸控制一直是個關鍵的議題。而此研究主要在探討氧化鋅奈米棒在塑膠基板上的應用。將基板沉浸在Zn(NO3)26H2O與C12H6N4溶液中,以進行幾種不同條件的沉積。在X光衍射圖形中顯示,沉積的薄膜是由氧化鋅和氫氧化鋅所構成,並且由於X光在(110)與(002)上有很強烈的反射,所以也可得知薄膜的C軸是與基板平行的。
    經過電漿表面處理的薄膜,比未經過表面處理的薄膜,會有更強的峰值強度。並且表面的氧化鋅奈米結構也會有比較均勻的結晶分布。此研究製造出的增強型氧化鋅柱 TFTs表現出了很好的電晶體特性,汲極飽和電流在閘極電壓35V時可到達38.1A。
    此研究成功的在塑膠基板上製造出氧化鋅奈米柱TFTs。氧化鋅奈米柱的表面粗糙度與結構,會強烈的被溶液的酸鹼值影響。此現象可以藉由觀察TFTs的氧化鋅奈米柱通道電特性,如何被溶液酸鹼值影響而得知。在溶液酸鹼值7.80時,可以得到最好的氧化鋅奈米柱TFTs電特性。在增強型模式中,表面rms粗糙度為0.94 nm、電子飽和漂移率為5.74 cm2/V.s、臨界電壓為20 V、汲極電流開關速率為1.8x105。
    在有張力和與不具有機械應力影響的多種不同條件下,製作ZnO 奈米柱TFTs。有張力條件的溶液,會影響元件的汲極飽和電流、電子漂移率與開關電流比例 。與在無機械應力下長成的元件相比,在有機械應力下長成的元件,電子漂移率會從2.5×10−5 cm2/V.s 增加到4.5×10−5 cm2/V.s。這些在氧化鋅奈米柱TFTs中的電子特性改變,似乎與奈米柱間距離的變化有關。此研究為第一個在彎折狀態下還能完整正常工作的軟式氧化鋅TFTs,並且描述了在溶液法製作的氧化鋅奈米柱,必須要解決的實際問題。
    此研究也利用溶液法,長成鈦氧化鋯鋇質介電層的並五苯有機TFTs。利用寫入/讀出的操作,元件表現出記憶體的特性,如可回復臨界電壓偏移與非破壞讀取。也測試了資料的保留時間與重複切換循環耐力測試,得以驗證元件的可靠度。更討論了記憶效應可能的原理。此研究結果開啟了該元件,在有機非揮發性記憶體的應用機會。
    此研究也利用了溶液製程實現了一個在低成本、低溫環境、可饒基板的聚(4-乙烯基苯酚)電晶體。一個6,13-bis (triisopropylsilylethynyl) (TIPS) pentacene–graphene混和半導體在可饒與玻璃板上、室溫中,成功的實現了底層閘極與底層接觸場效電晶體元件。TIPS pentacene–graphene混和半導體與poly(4-vinylphenol)閘極介電質的交互連接,表現出有效的電子遷移率0.076 cm2V−1s−1,並且在-40V閘極電壓時,臨界電壓為-0.7V。相較之下,一般TIPS並五苯電晶體只有四分之一的電子遷移率0.019 cm2V−1s−1,並且臨界電壓也為5V。

    The control dimension and morphology in Zinc Oxide (ZnO) nanorods are critical issues in the fabrication of electronic nanodevice. This study discusses ZnO nanorods on plastic substrate for Thin Film Transistor (TFTs) applications. The substrate was immersed in a zinc nitrate hexahydrate Zn(NO3)26H2O and hexamethylenetetramine C12H6N4 solution under various deposition conditions. The X-ray diffraction (XRD) pattern showed that the films were composed of ZnO and Zn(OH)2, and that the ZnO crystal had strong x-ray reflection peaks (110) and (002), in which the c-axis was parallel to the substrate.
    The films with plasma surface pre-treatment has stronger (110) peak intensity than that without plasma surface pre-treatment. Also, very uniform grain size of the ZnO nanostructures can be seen. The fabricated enhancement mode ZnO TFTs exhibiting good transistor behavior with the drain saturation current of 38.1 A at VGS = 35 V can be achieved.
    The ZnO nanorods based TFTs on plastic substrate by solution method under low temperature were successfully fabricated. The pH of solution and the surface rms roughness greatly influenced the structure and morphology of the ZnO nanorods. It can be seen that the electrical properties of ZnO nanorods based-TFTs is depend greatly on the pH value of the solution and the surface rms roughness of ZnO nanorods channel. The best electrical properties of the ZnO nanorods based-TFTs was obtained at pH value of the solution of 7.80 and surface rms roughness value of 0.94 nm in which the ZnO nanorods based-TFTs operates in the enhancement mode, exhibiting the saturation mobility of about 5.74 cm2/V.s, a threshold voltage of 20 V and drain current on-to-off ratio of 1.8x105.
    The ZnO nanorods based-TFTs are fabricated under different process such as under strain tensile effect and without mechanical effect. As observed in strain tensile solution process effect, the saturated drain current, field-effect mobility and on/off ratio was changed. The field-effect mobility of 2.5×10−5 cm2/V.s in the obtained ZnO channel layer without mechanical bending effect is increases to 4.5×10−5 cm2/V.s in films without mechanical bending effect. These changes of the electrical performance of ZnO nanorods based TFTs caused by bending of the substrate are likely related to change in the distance between the nanorods. This study is meaningful in that this is the first report on solution-processed flexible ZnO TFTs which are fully functional in the bent state solution process and describes the practical problems that must be solved in order to make ZnO TFTs on plastic substrates through the solution methods of ZnO nanorods.
    Pentacene-based organic TFTs (OTFT) with solution-processed barium zirconate titanate dielectric layers are demonstrated. According to the programming/erasing operations, the devices exhibited memory characteristics, such as reversible threshold voltage shifts and nondestructive readout. The reliability of the memory was confirmed by data retention time and repeated switching cycles’ endurance testing. The possible mechanism of the memory effect was also discussed. These results suggest that the devices could potentially be applied to nonvolatile memory applications in organic electronics.
    Solution processible poly(4-vinylphenol) is employed as a transistor dielectric material for low cost processing on flexible substrates at low temperatures. A 6,13-bis (triisopropylsilylethynyl) (TIPS) pentacene–graphene hybrid semiconductor is drop cast to fabricate bottom-gate and bottom-contact field-effect transistor devices on flexible and glass substrates under an ambient air environment. The TIPS pentacene–graphene hybrid semiconductor-based OTFTs cross-linked with a poly(4-vinylphenol) gate dielectric exhibit an effective field-effect mobility of 0.076 cm2V−1s−1 and a threshold voltage of −0.7 V at Vgs = −40 V. By contrast, typical TIPS Pentacene shows four times lower mobility of 0.019 cm2V−1s−1 and a threshold voltage of 5 V.

    ABSTRACT (Chinese) ......... I ABSTRACT (English) ......... III CONTENTS ........... V FIGURE CAPTIONS ......... VII CHAPTER 1 Introduction 1.1 Background and motivation ........ 1 1.2 Overview of dissertation ............ 2 1.3 References ........ 3 CHAPTER 2 Theory and experimental equipment 2.1 Properties of ZnO ...... 4 2.2 Properties of Barium Zirconate Titanate .... 5 2.3 Properties of Pentacene ...... 5 2.4 Properties of poly(4-vinylphenol) ..... 6 2.5 Liquid phase deposition method ...... 7 2.6 References ........ 9 CHAPTER 3 ZnO based thin films transistor 3.1 Introduction ......... 11 3.2 Experimental ....... 12 3.3 Results and discussions.................... 13 3.3.1 Plasma surface effect on electrical properties of ZnO TFTs.. 13 3.3.2 Boron-incorporated ZnO nanorods on plastic for solution- processed transparent electronics applications ... 16 3.3.3 Effect pH of the solution and surface rms roughness of ZnO nanorods channel on the electrical properties of TFTs . 19 3.3.4 Electrical and morphological properties of flexible ZnO na- norods TFTs under tensile strain solution process .. 26 3.4 Summary .......... 31 3.5 References ....... 32 CHAPTER 4 Solution-processed Barium Zirconate Titanate for pentacene ba- sed TFTs and memory 4.1 Introduction ......... 34 4.2 Experimental ....... 34 4.3 Results and discussions.................... 36 4.3.1 Solution-processed Barium Zirconate Titanate for TFTs application ....... 36 4.3.2 Solution-processed Barium Zirconate Titanate for memory 38 4.4 Summary .......... 42 4.5 References .......... 43 CHAPTER 5 Solution-processed Poly(4-vinylphenol) for Pentacene thin film transistor applications 5.1 Introduction ......... 44 5.2 Experimental ....... 45 5.3 Results and discussions.................... 46 5.4 Summary .......... 52 5.5 References .......... 54 CHAPTER 6 Conclusions and Future Works 6.1 Conclusions........ 55 6.2 Future Works.......... 56 ACKNOWLEDGEMENT ......... 58 PUBLICATION LIST ............ 60 VITA ............ 62

    1.3 References

    [1] J.P. Kim, S.A Lee, J.S. Bae, S.K. Park, U.C. Choi, C.R. Cho, “Electric properties and surface characterization of transparent Al-doped ZnO thin films prepared by pulsed laser deposition”, Thin Solid Films, vol. 516, issue 16, pp. 5223-5226, June 2008.
    [2] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, vol. 292, issue 5523, pp. 1897-1899, June 2001.
    [3] Z. Fan, D. Wang, P.C. Chang, W.Y. Tseng and J.G. Lum, “ZnO nanowire field-effect transistor and oxygen sensing property”, Appl. Phys. Lett. vol. 85, issue 24, pp. 5923-5925, Dec 2004.
    [4] F. Zhang, X. Wang, S. Ai, Z. Sun, Q. Wan, Z. Zhu, Y. Xian, L. Jin and K. Yamamoto,”Immobilization of uricase on ZnO nanorods for a reagent less uric acid biosensor”, Anal. Chem. Acta, vol. 519, pp. 155-160, May 2004.
    [5] J. Goldberger, D.J. Sirbuly, M. Law and P. Yang, “ZnO nanowire transistors“, J. Phys.Chem. B, vol. 109, issue 1, pp. 9-14, Dec 2004.
    [6] Z. Fan and. JG. Lu, “Electrical Property of ZnO Nanowires Characterized by a Scanning Probe“, Appl. Phys. Lett., vol. 86, issue , pp. 032111, Jan 2005.
    [7] C.J. Lee, T.J. Lee, S.C Lyu, Y. Zhang, H. Ruh and H.J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature“, Appl. Phys. Lett., vol. 81, issue 19, pp. 3648-3650, Nov 2002.
    [8] O.D. Jurchescu, J.Baas, TTM. Palstra, “Effect of impurities on the mobility of single crystal pentacene”, Appl. Phys. Lett., vol. 84, no. 16, pp. 3061-3063, April 2004.

    2.6 References

    [1] T. Yamamoto, T. Sakemi, K. Awai and S. Shirakata, “Dependence of carrier concentrations on oxygen pressure for Ga-doped ZnO prepared by ion plating method”, Thin Solid Films, vol. 451, pp. 439-442, March 2004.
    [2] H. Hirasawa, M. Yoshida, S. Nakamura, Y. Suzuki, S. Okada and K. Kondo, “ZnO:Ga conducting-films grown by DC arc-discharge ionplating” Sol. Energy Mater Sol Cells, vol. 67, issue 1-4, pp. 231-236, March 2001.
    [3] K. Iwata, T. Sakemi, A. Yamada, P. Fons, K. Awai, T. Yamamoto, M. Matsubara, H. Tampo, and S. Niki, “Growth and electrical properties of ZnO thin films deposited by novel ion plating method”, Thin Solid Films, vol. 445, issue 2, pp. 274-277, Dec 2003.
    [4] Y.J. Xing, Z.H. Xi, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Z.Q. Xue and D.P. Yu, “Thermal evaporation synthesis of zinc oxide nanowires”, Applied Physics A: Materials Science & Processing, vol. 80, issue 7, pp. 1527-1530, April 2005.
    [5] H. Gomez, A. Maldonado, M.L. Olvera and D.R. Acosta, “Gallium-doped ZnO thin films deposited by chemical spray”, Sol Energy Mater Sol Cells, vol. 87, pp. 107-116, May 2005.
    [6] T. A. Vijayan, R. Chandramohan,S. Valanarasu, J. Thirumalai, S. Venkateswaran, T. Mahalingam and S.R Srikumar, “Optimization of growth conditions of ZnO nano thin films by chemical double dip technique”, Sci. Tech. Adv. Mater., vol. 9, issue 3, pp. 035007-035011, Sept. 2008.
    [7] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, and H. Ma, “Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature”, J Cryst Growth, vol.274, issue 3-4, pp. 474-479 , Feb. 2005.
    [8] S.F.Wang, T.Y Tseng, Y.R Wang, C.Y Wang and H.C. Lu, “Effect of ZnO seed layers on the solution chemical growth of ZnO nanorod arrays”, Ceramics International, vol. 35, issue 3, pp. 1255-1260, April 2009.
    [9] L. Naszályi, A. Deák, E. Hild, A. Ayral, A. L. Kovács and Z. Hórvölgyi, “Langmuir–Blodgett films composed of size-quantized ZnO nanoparticles: Fabrication and optical characterization”, Thin Solid Films, vol. 515, issue 4, pp. 2587-2595, Dec 2006.
    [10] S Kumar and P Sharma, “Low-intensity ultraviolet light detector using a surface acoustic wave oscillator based on ZnO/LiNbO3 bilayer structure”, Semicond. Sci. Technol., vol. 20, no. 8, pp. L27-L30, August 2005.
    [11] J. Tornow and K. Schwarzburg, “Transient Electrical Response of Dye-Sensitized ZnO Nanorod Solar Cells”, J. Phys. Chem. C, vol. 111, no. 24, pp. 8692-8698, May 2007.
    [12] A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, and K. Kalantar-zadeh, “Characterization of ZnO Nanobelt-Based Gas Sensor for H2, NO2 and Hydrocarbon Sensing”, IEEE Sensors Journal, vol. 7, no, pp. 919-924, June 2007.
    [13] D. Xu, Z. Deng, Y. Xu, J. Xiao, C. Liang, Z. Pei and C. Sun, “An anode with aluminum doped on zinc oxide thin films for organic light emitting devices”, Physics Letters A, vol. 346 , issue 1-3, pp. 148-152, Oct. 2005.
    [14] S Ju, K Lee, MH Yoon, A Facchetti, TJ Marks, and DB Janes, “High performance ZnO nanowire field effect transistors with organic gate nanodielectrics: effects of metal contacts and ozone treatment”, Nanotechnology, vol. 18, no. 15, pp. 155201, April 2007.
    [15] Y. Zhi, A. Chen, R. Guo, and A.S. Bhalla, “Piezoelectric and strain properties of Ba(Ti1−xZrx)O3 ceramics”, J. Appl. Phys., vol. 92, issue 3, pp. 1489-1493, August 2002.
    [16] C.M. Wu, T.B. Wu, and M.L. Chen, “Highly insulative barium zirconate-titanate thin films prepared by rf magnetron sputtering for dynamic random access memory applications”, Appl. Phys. Lett., vol. 69, issue 18, pp. 2659-2661, Oct. 1996.
    [17] X.G. Tang, J. Wang, X.X. Wang, and H.L.W. Chan, “Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3 ceramics”, Sol. State Commun., vol. 131, issue 3-4, pp. 163-168, July 2004.
    [18] Z. Yu, R. Guo, and A.S. Bhalla, “Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals”, J. Appl. Phys., vol. 88, issue 1, pp. 410-415, July 2000.
    [19] Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, “Dielectric properties and high tunability of Ba(Ti0.7Zr0.3)O3 ceramics under dc electric field”, Appl. Phys. Lett., vol. 81, issue 7, pp. 1285-1287, August 2002.
    [20] A.Dixit, S.B. Majumder, R.S. Katiyar and A.S. Bhalla, “Relaxor behavior in sol–gel-derived BaZr(0.40)Ti(0.60)O3 thin films” , Appl. Phys. Lett., vol. 82, issue 16, pp. 2679-2681, April 2003.
    [21] P.S. Dobal, and R.S. Katiyar, “Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy”, J. Raman Spectroscopy, vol. 33, issue 6, pp. 405-423, June 2002.
    [22] A. Dixit, S.B. Majumder, A. Savvinov, R.S. Katiyar, R. Guo, and A.S. Bhalla, “Investigations on the sol–gel-derived barium zirconium titanate thin films”, Mater. Lett., vol. 56, issue 6, pp. 933-940, Nov. 2002.
    [23] D.S. Paik, S.E. Park, S. Wada, S.F. Liu, and T.R. Shrout, “E-field induced phase transition in <001>-oriented rhombohedral 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 crystal”, J. Appl. Phys., vol. 85, issue 2 , pp. 1080-1083, Jan. 1999.
    [24] J.Q. Qi, B.B. Liu, H.Y. Tian, H. Zou, Z.X Yue, and L.T. Li, “Dielectric properties of barium zirconate titanate (BZT) ceramics tailored by different donors for high voltage applications”, Solid State Sciences, vol. 14, issue 10, pp. 1520-1524, Oct. 2012.
    [25] W. Cai, C. Fu, J. Gao, X. Chen, and Q. Zhang, “Microstructure and dielectric properties of barium zirconate titanate ceramics by two methods”, Integrated Ferroelectrics: An International Journal, vol. 113, issue 1, pp. 83-94, March 2010.
    [26] J. E. Northrup, M.L Tiago, and S.G Louie, “Surface energetics and growth of Pentacene” , Phys. Rev. B, vol. 66, pp. 121404, Sept. 2002.
    [27] R. B. Campbell and J. M. Robertson, “The crystal structure of hexacene, and a revision of the crystallographic data for tetracene” , Acta Crys. vol. 15, pp. 289-290, March 1962.
    [28] W.H. Mills, and M. Mills, “The synthetical production of derivatives of dinaphthanthracene”, J.Chem. Soc. Trans., vol. 101, pp. 2194-2208, Jan 1912.
    [29] G. Horowitz, “Organic Field-Effect Transistors”, Adv. Mater. (Weinheim. Ger), vol. 10, issue 5, pp. 365-377, March 1998.
    [30] D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. Wiley, New York, Chap 6, 2006.
    [31] S. Deki, S. Iizuka, M. Mizuhata, and A. Kajinami “Fabrication of nano-structured materials from aqueous solution by liquid phase deposition”, Journal of Electroanalytical Chemistry, vol. 584, issue 1, pp. 38- 43, Oct. 2005.

    3.5 References

    [1] J.P. Kim, S.A. Lee, J.S. Bae, S.K. Park, U.C. Choi, and C.R. Cho, “Electric properties and surface characterization of transparent Al-doped ZnO thin films prepared by pulsed laser deposition”, Thin Solid Films, vol. 516, issue16, pp.5223-5226, June 2008.
    [2] S. H. Won, J. K. Chung, C. B. Lee, H. C. Nam, J. H. Hur, and J. Jang, “Effect of Mechanical and Electrical Stresses on the Performance of an a-Si:H TFT on Plastic Substrate”, J. Electrochem. Soc., vol. 151, issue 3, pp. G167-G170, Jan. 2004.
    [3] J.H. Jun, B.Park, K. Cho and S. Kim, “Flexible TFTs based on solution-processed ZnO nanoparticles”, Nanotechnology, vol. 20, no. 50, pp. 505201-505207, Dec. 2009.
    [4] G. Zhang, M. Adachi, S. Ganjil, A. Nakamura, J. Temmyo, and Y. Matsui,” Vertically Aligned Single-Crystal ZnO Nanotubes Grown on -LiAlO2(100) Substrate by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., vol. 46, no. 29, L730-732, August 2007.
    [5] K. Remashan, D. K. Hwang, S.D. Park, J.W. Bae, G.Y. Yeom, S. J. Park, and J. H. Jang, “Effect of N2O Plasma Treatment on the Performance of ZnO TFTs”, Electrochem. Solid-State Lett., vol. 11, no. 3, pp. H55-H59, Jan 2008.
    [6] C. M Chan, Polymer Surface Modification and Characterization (Munich; Hanser; New York: Hanser), pp.237-238, 1994.
    [7] C.J. Huang, and W.C. Shih, “Optimization of pretreatment for liquid-phase deposition of SiO2 on ARTON plastic substrate”, J. Electronic Mat., vol. 32, issue 6, pp. 478-482, June 2003.
    [8] D. Shi, and P. He, “Surface Modifications of Nanoparticles and Nanotubes by Plasma Polymerization”, Rev. Adv .Mater. Sci., vol. 7, no. 2, pp 97-107, Sep. 2004.
    [9] A.C. Mofor, A.S. Bakin, B. Postels, M. Suleiman, A. Elshaer and A. Waag, “Growth of ZnO layers for transparent and flexible electronics”, Thin Solid Films, vol. 516, issue 7, pp..1401-1404, Feb. 2008.
    [10] Y.W. Chen, Q. Qiao, Y.C. Liu and G.L. Yang,”Size-Controlled Synthesis and Optical Properties of Small-Sized ZnO Nanorods”, J. Phys. Chem. C, vol. 113, issue 18, pp. 7497- , May 2009.
    [11] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solution”, Adv. Mater, vol. 15, issue 5, pp. 464-, March 2003.
    [12] Joint Committee on Powder Diffraction Standards, ICDD, Swarthmore, PA, “the ZnO Card # 003-0888”, Powder Diffraction File, 2006.
    [13] Joint Committee on Powder Diffraction Standards, ICDD, Swarthmore, PA, “the Zn(OH)2 Card # 00-038-0356”, Powder Diffraction File, 2006.
    [14] D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis and N. Katsarakis, “pH effect on the morphology of ZnO nanostructures grown with aqueous chemical growth”, Thin Solid Films, vol. 515, issue 24, pp. 8764-8767, Oct. 2007.
    [15] S.J. Lee, S.K.Park, C.R. Park, J.Y. Lee, J. Park and Y.R. Do, “Spatially Separated ZnO Nanopillar Arrays on Pt/Si Substrates Prepared by Electrochemical Deposition”, J. Phys. Chem. C, vol. 111, issue 32, pp. 11793-11801, August 2007.
    [16] S. Baruah and J. Dutta, “pH-dependent growth of zinc oxide nanorods”, J. Crystal Growth, vol. 311, issue 8, pp. 2549-2554, April 2009.
    [17] Y.K. Tseng, C.J. Huang, H.M. Cheng, I.N. Lin, K.S. Liu and I.C. Chen, “Characterzation and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide film”, Adv. Funct. Matter, vol.13, issue 10, pp. 811-814, Oct. 2003.
    [18] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, J. Mater. Chem., vol. 12, issue 12, pp. 3773-3778, Sept. 2002.
    [19] E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, “Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature”, Adv. Mat., vol.17, issue 5, pp. 590-594, March 2005.
    [20] H. S. Bae, J. H. Kim, and S. Im, “Mobility Enhancement in ZnO-Based TFTs by H Treatment”, Electrochemical and Solid-State Letters, vol. 7, issue 11, pp. G279-G281, Oct. 2004.
    [21] B. Sun, R.L. Peterson, H. Sirringhaus and K. Mori, “Low-Temperature Sintering of In-Plane Self-Assembled ZnO Nanorods for Solution-Processed High-Performance Thin Film Transistors”, J. Phys. Chem. C, vol. 111, issue 51, pp. 18831-18835, Dec. 2007.
    [22] S. Ju, J.Li , N. Pimparkar, M. Alam, R.P.H. Chang and D.B. Janes, “N-Type Field-Effect Transistors Using Multiple Mg-Doped ZnO Nanorods”, IEEE Transactions on Nanotechnology, vol.6, issue 3, pp. 390-395, May 2007.
    [23] B. Sun and H. Sirringhaus, “Solution-Processed Zinc Oxide Field-Effect Transistors Based on Self-Assembly of Colloidal Nanorods”, Nano Letters, vol. 5, issue 12, pp. 2408-2413, Dec. 2005.
    [24] Y. Fujisaki, H. Sato, H. Fujikake, Y. Inoue, S. Tokito and T. Kurita, “Liquid Crystal Display Cells Fabricated on Plastic Substrate Driven by Low-Voltage Organic Thin-Film Transistor with Improved Gate Insulator and Passivation Layer”, Japan. J. Appl. Phys., vol. 44, issue 6A, pp. 3728–32, June 2005.

    4.5 References

    [1] K. H. Lee, G. Lee, K. Lee, M.S Oh, S. Im and S.M Yoon, “High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels,” Adv. Mater., vol. 21, issue 42, pp. 4287-4291, Nov. 2009.
    [2] L. Ma, S. Pyo, J. Ouyang, Q. X and Y. Yang, “Nonvolatile electrical bistability of organic/metal-nanocluster/organic system,” Appl. Phys. Lett., vol. 82, issue 9, pp. 1419-1421, March 2003.
    [3] S.J. Kim, Y.S. Park, S. H. Lyu, and J. S. Lee,“Nonvolatile nano floating gate memory devices based on Pentacene semiconductors and organic tunneling insulator layers,” Appl. Phys. Lett., vol. 96, issue 3, pp. 033302-033304, Jan. 2010.
    [4] Q. J. Cai, Y. Gan, M. B. C. Park, H.B. Yang, Z.S. Lu, C.M Li, J. Guo and Z.L Dong, “Solution-processable barium titanate and strontium titanate nanoparticle dielectrics for low-voltage organic thin-film transistors,” Chem. Mater., vol. 21, issue 14, pp. 3153-3161, June 2009.
    [5] F.A. Yildirim, C. Ucurum, R. R. Schliewe, . Bauhofer, R. M. Meixner,H. Goebel and W. Krautschneider, “Spin-cast composite gate insulation for low driving voltages and memory effect in organic field-effect transistors,” Appl. Phys. Lett., vol. 90, issue 8, pp. 083501-1, Feb. 2007.
    [6] C. Y. Wei, S. H. Kuo, Y. M. Hung, W.C Huang, F. Adriyanto and Y.H. Wang., “High mobility pentacene-based thin film transistors with a solution-processed barium titanate insulator,” IEEE Electron Device Lett., vol. 32, issue 1, pp. 90-92, Jan. 2011.
    [7] C.Y Wei, W. C. Huang, C. K. Yang, Y.Y. Chang and Y.H. Wang, “Low-operating voltage pentacene-based transistors and inverters with solution-processed barium zirconate titanate insulators”, IEEE Electron Device Lett., vol. 32, issue 12, pp. 1755-1757, Dec. 2011.
    [8] S. K. Rout, T. Badapanda, and S. Panigrahi, “Dielectric study of spin coated nano-thick BaZrxTi1−xO3 film,” Indian J. Pure Appl. Phys., vol. 45, issue 9, pp. 749-753, Sept. 2007.
    [9] N. Nanakorn, P. Jalupoom, N. Vaneesorn, and A. Thanaboonsombut, “Dielectric and ferroelectric properties of BaZrxTi1−xO3 ceramics,” Ceram. Int., vol. 34, issue 4, pp. 779-782, May 2008.
    [10] K. J. Baeg, Y. Y. Noh, J. Ghim, S.J. Kang, H. Lee and D.Y. Kim, “Organic non-volatile memory based on Pentacene field-effect transistors using a polymeric gate electric,” Adv. Mater., vol. 18, issue 23, pp. 3179-, Dec. 2006.
    [11] B. Singh, N. Marjanovic, N. S. Sariciftci, R. Schwodiauer, and S. Bauer, “Electrical characteristics of metal-insulator-semiconductor diodes and transistors with space charge electric insulators: Towards nonvolatile organic memories,” IEEE Trans. Dielectr. Electr. Insul., vol. 13, issue 5, pp. 1082-1086, Oct. 2006.
    [12] S.J. Kang, I. Bae, Y. J. Park, T.H Park, J. Sung, S.C. Yoon, K.H Kim, D.H Choi and C. Park, “Non-volatile ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) memory based on a single-crystalline tri-isopropylsilylethynyl Pentacene field-effect transistor,” Adv. Funct. Mater., vol. 19, issue 10, pp. 1609-1616, May 2009.

    5.5 References

    [1] S.I. Shin, J.H. Kwon, H. Kang and B.K. Ju, “Solution-processed 6,13 bis(triisopropylsilylethynyl)(TIPS) Pentacene thin-film transistors with a polymer dielectric on a flexible substrate”, Semicond. Sci. Technol. Vol. 23, issue 8, pp. 085009, June 2008.
    [2] L.L Chua, J. Zaumseil, J.F. Chang, C.W. Ou Eric, K.H Ho Peter, H. Sirringhaus and R.H. Friend, “General observation of n-type field-effect behaviour inorganic semiconductors”, Nature, vol. 434, issue 7030, pp.194-195, March 2005.
    [3] A. Facchetti A, M. Yoon and T.J. Marks, “Gate dielectrics for organic field-effct transistors new opportunities for organic electronics”, Adv. Mater., vol. 17, issue 14, pp. 1705-1725, July 2005.
    [4] C. Kim, A. Facchetti and T.J. Marks, “Polymer gate dielectric surface viscoelasticity modulates Pentacene transistor performance”, Science, vol. 318, issue 5842, pp. 76-80, Oct. 2007.
    [5] T.A Pham, J.S. Kim and Y.T. Jeong, “One-step reduction of graphene oxide with l-glutathione”, Colloids Surf. A: Physicochemical and Engineering Aspects, vol. 384, issue 1-3, pp. 543-548, July 2011.
    [6] J.E. Anthony, J.S. Brooks, D.L. Eaton and S.R. Parkin, “Functionalized pentacene: improved electronic properties from control of solid-state order,” J. Am. Chem. Soc.,vol. 123, issue 38, pp. 9482-9483, Sept. 2001.
    [7] A. Bolognesi, A.D. Carlo and P. Lugli, “Influence of carrier mobility and contact barrier height on the electrical characteristics of organic transistors”, Appl. Phys. Lett., vol. 81, issue 24, pp. 4646-4648, Dec. 2002.
    [8] S. Cherian S, C. Donley, D. Mathine, L. LaRussa, W. Xia and N. Armstrong, “Effects of field dependent mobility and contact barriers on liquid crystalline phthalocyanine organic transistors”, J. Appl. Phys., vol. 96, issue 10, pp. 5638-5643, Nov. 2004.

    下載圖示 校內:2020-01-01公開
    校外:2020-01-01公開
    QR CODE