簡易檢索 / 詳目顯示

研究生: 江宗富
Chiang, Tsung Fu
論文名稱: 一個應用於動態物聯網環境之高效益進化式任務卸載節點選擇方法
A High-Efficiency and Progressive Task Offloading Node Selection Method for Dynamic IoT System
指導教授: 賴槿峰
Lai, Chin-Feng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 物聯網邊緣計算任務卸載
外文關鍵詞: Internet of Things, Edge Computing, Task Offloading
相關次數: 點閱:105下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑑於近年大量如人工智慧或區塊鏈等高性能消耗應用的興起使得雲端資源漸趨吃緊,以物聯網裝置來卸載雲端應用的研究成果正不斷地進展。然而,由於物聯網的高度動態特性使得其中裝置難以被組織並執行卸載任務。

    為此,本研究提出了一套用於高度動態的物聯網環境的任務卸載方法。此方法能根
    據卸載任務的被執行時間來隨時動態調整任務卸載配置機制。並且,此配置方法不
    同於大部分的卸載方法,其在追求執行時間達到標準的同時亦盡量避免佔用較高性
    能的節點。有了以上兩個特點後,使得卸載系統具備動態環境適應性以及任務執行
    效益性,在實際應用於物聯網環境有高度的應用能力。並且本研究考慮到不同物聯
    網環境其動態性與負載程度恐怕相去甚遠,因此另外提出更新距離 (UpdateWidth) 與系統負載 (SystemLoad) 兩個參數,以根據實際環境調整對於動態環境的適應能力與高性能節點對於低消耗任務的執行傾向。

    最後,透過文末提出的實驗結果,可以發現系統在擁有充足可選的節點時時,其時
    間消耗的表現與預期時間消耗差距小於 5%。另外,在同時併發實驗時也能注意到,若卸載的任務消耗高於或者低於系統中的可分配節點之能力時,整體的執行時間變異將擴大,整體平均消耗遠離預期消耗的同時,亦提高最高與最低時間消耗的差距。

    In this paper, we proposed a task offloading method for highly dynamic IoT environments, named Progressive Dynamic Task Offloading(PDTO). PDTO dynamically adjusts the task offloading strategy to achieve a more efficient deployment at any time. Therefore, PDTO ensures the actual time consumption close to the preferred time cost while avoiding the use of higher performance nodes. These properties make PDTO adaptable, efficient, and feasible to offload tasks in higly dynamic environments like IoT. Considering the dynamics and loading of different IoT environments are quite different, the two parameters are proposed to adjust the adaptability and the tendency of high-performance nodes to execute low cost tasks.

    Finally, through the experimental results, we found that if there is a candidate node with the ideal performance, the actual time costs will close to the preferred time cost which difference won’t greater than 5%. On the contrary, if no ideal candidate node existing, the variation of overall time costs will be expanded, and the average changes.

    摘要 i 英文延伸摘要 ii 目錄 vi 表格 viii 圖片 ix 輸入參數表 xi 符號表 xii Chapter 1. 簡介 1 1.1. 研究動機 1 1.2. 研究目標 2 1.3. 章節提要 3 Chapter 2. 研究背景與相關文獻 4 2.1. 關於物聯網應用 5 2.1.1. 人工智慧於物聯網之應用 5 2.1.2. 其他高效能需求物聯網應用 7 2.2. 關於邊緣計算任務卸載 9 2.2.1. 傳輸卸載 10 2.2.2. 計算卸載 11 2.3. 關於 SFC 發展 11 2.4. 關於 NFV 發展 13 2.5. 論文主要貢獻 13 Chapter 3. 研究方法 15 3.1. PDTO 本體介紹 15 3.1.1. PDTO 總覽 15 3.1.2. 任務複雜度計算 17 3.1.3. 節點選擇 18 3.1.4. 模型更新 21 3.1.5. 參數整理 24 3.2. 相關參數介紹 25 3.2.1. PreferCost 對於模型權重之影響 26 3.2.2. UpdateWidth 對於收斂之影響 28 3.2.3. SystemLoad 對於模型權重之影響 30 Chapter 4. 實驗方法與結果 32 4.1. 實驗環境介紹 32 4.1.1. 實驗硬體系統架構 32 4.1.2. 實驗軟體架構 33 4.1.3. 硬體模擬方法 35 4.2. 參數設計與實驗結果 38 4.2.1. 實驗列表與調變說明 38 4.2.2. PreferCost 調變 39 4.2.3. SystemLoad 調變 50 4.2.4. UpdateWidth 調變 58 Chapter 5. 結論與未來展望 61 5.1. 研究結論 61 5.2. 未來展望 62 References 64

    [1] U. S. Shanthamallu, A. Spanias, C. Tepedelenlioglu, and M. Stanley, “A brief survey of machine learning methods and their sensor and iot applications,” in 2017 8th International Conference on Information, Intelligence, Systems & Applications (IISA), pp. 1–8, IEEE, 2017.

    [2] S. Popov, “The tangle,” cit. on, p. 131, 2016.

    [3] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf, “Nist cloud computing reference architecture,” NIST special publication, vol. 500, no. 2011, pp. 1–28, 2011.

    [4] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and issues,” in Proceedings of the 2015 workshop on mobile big data, pp. 37–42, ACM, 2015.

    [5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

    [6] W. Robbins and S. Dustdar, Collaborative Computing, pp.
    67–74. Springer US, 2008. Boston, MA:

    [7] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and T. Magedanz, “Service function chaining in next generation networks: State of the art and research challenges,” IEEE Communications Magazine, vol. 55, no. 2, pp. 216–223, 2017.

    [8] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

    [9] M. Ersue, “Etsi nfv management and orchestration-an overview,” in Proc. of 88th IETF meeting, 2013.

    [10] D. Xu, Y. Li, X. Chen, J. Li, P. Hui, S. Chen, and J. Crowcroft, “A survey of opportunistic offloading,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2198–2236, 2018.

    [11] M. Mohammadi and A. Al-Fuqaha, “Enabling cognitive smart cities using big data and machine learning: Approaches and challenges,” IEEE Communications Magazine, vol. 56, no. 2, pp. 94–101, 2018.

    [12] M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J.-S. Oh, “Semisupervised deep reinforcement learning in support of iot and smart city services,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 624–635, 2018.

    [13] X. Ma, H. Yu, Y. Wang, and Y. Wang, “Large-scale transportation network congestion evolution prediction using deep learning theory,” PloS one, vol. 10, no. 3, p. e0119044, 2015.

    [14] P. M. Kumar and U. D. Gandhi, “A novel three-tier internet of things architecture with machine learning algorithm for early detection of heart diseases,” Computers & Electrical Engineering, vol. 65, pp. 222–235, 2018.

    [15] P. S. Pandey, “Machine learning and iot for prediction and detection of stress,” in 2017 17th International Conference on Computational Science and Its Applications (ICCSA), pp. 1–5, IEEE, 2017.

    [16] G. Muhammad, S. M. M. Rahman, A. Alelaiwi, and A. Alamri, “Smart health solution integrating iot and cloud: A case study of voice pathology monitoring,” IEEE Communications Magazine, vol. 55, no. 1, pp. 69–73, 2017.

    [17] S. S. Patil and S. A. Thorat, “Early detection of grapes diseases using machine learning and iot,” in 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), pp. 1–5, IEEE, 2016.

    [18] T. Baranwal, P. K. Pateriya, et al., “Development of iot based smart security and monitoring devices for agriculture,” in 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), pp. 597–602, IEEE, 2016.

    [19] M. Roopaei, P. Rad, and K.-K. R. Choo, “Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging,” IEEE Cloud computing, vol. 4, no. 1, pp. 10–15, 2017.

    [20] M. Strohbach, H. Ziekow, V. Gazis, and N. Akiva, “Towards a big data analytics framework for iot and smart city applications,” in Modeling and processing for next-generation big-data technologies, pp. 257–282, Springer, 2015.

    [21] K. Akkaya, I. Guvenc, R. Aygun, N. Pala, and A. Kadri, “Iot-based occupancy monitoring techniques for energy-efficient smart buildings,” in 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 58–63, IEEE, 2015.

    [22] M. S. Shahriar and M. S. Rahman, “Urban sensing and smart home energy optimisations: A machine learning approach,” in Proceedings of the 2015 International Workshop on Internet of Things towards Applications, pp. 19–22, ACM, 2015.

    [23] V. H. Bhide and S. Wagh, “i-learning iot: An intelligent self learning system for home automation using iot,” in 2015 International Conference on Communications and Signal Processing (ICCSP), pp. 1763–1767, IEEE, 2015.

    [24] N. Apthorpe, D. Reisman, and N. Feamster, “A smart home is no castle: Privacy vulnerabilities of encrypted iot traffic,” arXiv preprint arXiv:1705.06805, 2017.

    [25] S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert, “Industrial internet of things and cyber manufacturing systems,” in Industrial Internet of Things, pp. 3–19, Springer, 2017.

    [26] Y. Zhang, Z. Guo, J. Lv, and Y. Liu, “A framework for smart production-logistics systems based on cps and industrial iot,” IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4019–4032, 2018.

    [27] D. Kwon, M. R. Hodkiewicz, J. Fan, T. Shibutani, and M. G. Pecht, “Iot-based prognostics and systems health management for industrial applications,” IEEE Access, vol. 4, pp. 3659–3670, 2016.

    [28] D. Ventura, D. Casado-Mansilla, J. López-de Armentia, P. Garaizar, D. López-de Ipina, and V. Catania, “Ariima: a real iot implementation of a machine-learning architecture for reducing energy consumption,” in International Conference on Ubiquitous Computing and Ambient Intelligence, pp. 444–451, Springer, 2014.

    [29] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer, J. D. Guarnizo, and Y. Elovici, “Detection of unauthorized iot devices using machine learning techniques,”arXiv preprint arXiv:1709.04647, 2017.

    [30] C. Long, Y. Cao, T. Jiang, and Q. Zhang, “Edge computing framework for cooperative video processing in multimedia iot systems,” IEEE Transactions on Multimedia, vol. 20, no. 5, pp. 1126–1139, 2018.

    [31] J. Wang, B. Amos, A. Das, P. Pillai, N. Sadeh, and M. Satyanarayanan, “A scalable and privacy-aware iot service for live video analytics,” in Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 38–49, ACM, 2017.

    [32] A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, “Where’s the bear?-automating wildlife image processing using iot and edge cloud systems,” in 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 247–258, IEEE, 2017.

    [33] M. Abdel-Basset, G. Manogaran, and M. Mohamed, “Internet of things (iot) and its impact on supply chain: A framework for building smart, secure and efficient systems,”Future Generation Computer Systems, vol. 86, pp. 614–628, 2018.

    [34] K. Finkenzeller, RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. John Wiley & Sons, 2010.

    [35] A. Kamilaris, F. Gao, F. X. Prenafeta-Boldú, and M. I. Ali, “Agri-iot: A semantic framework for internet of things-enabled smart farming applications,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 442–447, IEEE, 2016.

    [36] H. Agrawal, J. Prieto, C. Ramos, and J. M. Corchado, “Smart feeding in farming through iot in silos,” in The International Symposium on Intelligent Systems Technologies and Applications, pp. 355–366, Springer, 2016.

    [37] S. K. Datta, M. I. Khan, L. Codeca, B. Denis, J. Härri, and C. Bonnet, “Iot and microservices based testbed for connected car services,” in 2018 IEEE 19th International Symposium on” A World of Wireless, Mobile and Multimedia Networks”(WoWMoM), pp. 14–19, IEEE, 2018.

    [38] K. Muhammad, R. Hamza, J. Ahmad, J. Lloret, H. Wang, and S. W. Baik, “Secure surveillance framework for iot systems using probabilistic image encryption,” IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3679–3689, 2018.

    [39] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for iot security and privacy: The case study of a smart home,” in 2017 IEEE international conference on pervasive computing and communications workshops (PerCom workshops), pp. 618–623, IEEE, 2017.

    [40] A. Stanciu, “Blockchain based distributed control system for edge computing,” in 2017 21st International Conference on Control Systems and Computer Science (CSCS), pp. 667–671, IEEE, 2017.

    [41] M. Samaniego and R. Deters, “Hosting virtual iot resources on edge-hosts with blockchain,” in 2016 IEEE International Conference on Computer and Information Technology (CIT), pp. 116–119, IEEE, 2016.

    [42] A. Bahga and V. K. Madisetti, “Blockchain platform for industrial internet of things,”Journal of Software Engineering and Applications, vol. 9, no. 10, p. 533, 2016.

    [43] T.-Y. Chen, W.-N. Huang, P.-C. Kuo, H. Chung, and T.-W. Chao, “Dexon: A highly scalable, decentralized dag-based consensus algorithm,” arXiv preprint arXiv:1811.07525, 2018.

    [44] A. Noori and D. Giustiniano, “Hycloud: a hybrid approach toward offloading cellular content through opportunistic communication,” in Proceeding of the 11th annual international conference on Mobile systems, applications, and services, pp. 551–552, ACM, 2013.

    [45] J. Whitbeck, M. Amorim, Y. Lopez, J. Leguay, and V. Conan, “Relieving the wireless infrastructure: When opportunistic networks meet guaranteed delays,” in 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–10, IEEE, 2011.

    [46] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, M. S. Nogueira, R. Langar, S. Secci, et al.,“Uloof: A user level online offloading framework for mobile edge computing,” IEEE Transactions on Mobile Computing, vol. 17, no. 11, pp. 2660–2674, 2018.

    [47] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity: Enabling remote computing among intermittently connected mobile devices,” in Proceedings of the thirteenth ACM international symposium on Mobile Ad Hoc Networking and Computing, pp. 145–154, ACM, 2012.

    [48] B. Li, Z. Liu, Y. Pei, and H. Wu, “Mobility prediction based opportunistic computational offloading for mobile device cloud,” in 2014 IEEE 17th International Conference on Computational Science and Engineering, pp. 786–792, IEEE, 2014.

    [49] I. Cerrato, T. Jungel, A. Palesandro, F. Risso, M. Suñé, and H. Woesner, “User-specific network service functions in an sdn-enabled network node.,” in EWSDN, pp. 135–136, 2014.

    [50] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan, et al., “Steering: A software-defined networking for inline service chaining,” in 2013 21st IEEE international conference on network protocols (ICNP), pp. 1–10, IEEE, 2013.

    [51] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-fying middlebox policy enforcement using sdn,” in ACM SIGCOMM computer communication review, vol. 43, pp. 27–38, ACM, 2013.

    [52] A. Abujoda and P. Papadimitriou, “Midas: Middlebox discovery and selection for on-path flow processing,” in 2015 7th International Conference on Communication Systems and Networks (COMSNETS), pp. 1–8, IEEE, 2015.

    [53] K. Giotis, Y. Kryftis, and V. Maglaris, “Policy-based orchestration of nfv services in software-defined networks,” in Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–5, IEEE, 2015.

    [54] G. Pallis and A. Vakali, “Insight and perspectives for content delivery networks,” Communications of the ACM, vol. 49, no. 1, pp. 101–106, 2006.

    [55] A. Csoma, B. Sonkoly, L. Csikor, F. Németh, A. Gulyas, W. Tavernier, and S. Sahhaf,“Escape: Extensible service chain prototyping environment using mininet, click, net-conf and pox,” in ACM SIGCOMM Computer Communication Review, vol. 44, pp. 125–126, ACM, 2014.

    [56] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement of virtualized network functions,” in 10th International Conference on Network and Service Management (CNSM) and Workshop, pp. 418–423, IEEE, 2014.

    [57] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network functions placement and routing optimization,” in 2015 IEEE 4th International Conference on Cloud Networking (CloudNet), pp. 171–177, IEEE, 2015.

    [58] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware and energy-efficient vnf placement for service chaining: Joint sampling and matching approach,”IEEE Transactions on Services Computing, 2017.

    [59] A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards edge slicing: Vnf placement algorithms for a dynamic & realistic edge cloud environment,” in GLOBECOM 2017-2017 IEEE Global Communications Conference, pp. 1–6, IEEE, 2017.

    [60] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-generation open source framework for deep learning,” in Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS), 2015.

    下載圖示 校內:2020-07-15公開
    校外:2020-07-15公開
    QR CODE