簡易檢索 / 詳目顯示

研究生: 鍾偉仁
Chung, Wei-Gen
論文名稱: 以超級電容做基載備援快速儲能系統之研究
Study on Supercapacitors as Dynamic Storage System for Base-Load Back-up Supply
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 78
中文關鍵詞: 快速儲能系統超級電容
外文關鍵詞: Dynamic storage system, Supercapacitor
相關次數: 點閱:110下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基載備援如燃料電池能使微電網系統之再生能源達到較高的供電穩定度。然而燃料電池之響應較慢,當負載有所變動時無法在短時間內追隨負載之變動量,因此需要加入快速儲能系統。超級電容響應快也具備充放電之功能,相當適合擔任快速儲能系統。超級電容的特性為低電壓大電流、響應快、可雙向充放電。為了克服超級電容電壓與直流鏈電壓之大壓差、轉換器需具備高升降壓比之特性。雙主動橋式轉換器具備高升降壓、電氣隔離、雙向功率流動等特性,適合超級電容為主的快速儲能系統。本研究實作一套額定500W之超級電容快速儲能系統搭配燃料電池,經由模擬及實測驗證超級電容系統追隨各種負載變動量的可行性。

    Base-load backup source, such as fuel cell, can help the micro-grid system with renewable energy sources, such as wind, improving power supply security. However, fuel cells have slow transient response, which cannot respond instantly to load changes. A dynamic storage system should be a good option to amend for this drawback. Supercapacitors have fast transient response and can store and supply power, making it suitable for serving as a dynamic storage system. The supercapacitors generally operate at low voltage and high current. The voltage difference between the supercapacitor and the DC bus voltage is considerable, so the converter requires high step-up and step-down voltage capabilities. The DC-DC bidirectional dual active bridge converter features bidirectional power flow, high step-up and step-down voltage ratio as well as electric isolation. These characteristics are right for supercapacitor’s application.
    This thesis presents the integration of the fuel cell and a 500W supercapacitor storage system. Simulation and field test validate the feasibility of the hybrid system in response to various load change patterns.

    摘要 I Abstract III Acknowledgements V Contents VI List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Research Goals and Motivations 1 1.2 Research Contents and Contributions 2 1.3 Research Outline 4 Chapter 2 System Design on Distributed Generation 6 2.1 Introduction 6 2.2 Standalone Generation System 6 2.3 Renewable System-Wind 7 2.3.1 Storage System-Battery 7 2.3.2 Base Load System-Fuel Cell 8 Chapter 3 System Design on Supercapacitor 13 3.1 Introduction 13 3.2 Conventional Capacitor 13 3.3 Supercapacitor 15 Chapter 4 Dynamic Storage System Design and Simulation 24 4.1 Introduction 24 4.2 DC Common Bus Power Flow Control Strategy 24 4.3 DC-DC Bidirectional Dual Active Bridge (DAB) Converter 26 4.4 DC-DC Bidirectional DAB Converter Control 37 4.4.1 Charge Control 37 4.4.2 Discharge Control 38 4.5 Powersim (Psim) Simulation Results 40 Chapter 5 Circuit and Software Design 47 5.1 Introduction 47 5.2 Schematics of the Testing Circuit 47 5.2.1 DC-DC Bidirectional DAB Converter 48 5.2.2 Voltage Sensor Circuit Design 49 5.2.3 Current Sensor Circuit Design 50 5.2.4 Power Module 51 5.2.5 Digital Signal Processor 56 5.3 Software Design 57 Chapter 6 Experimental Results 64 6.1 Introduction 64 6.2 Supercapacitor Charging and Discharging Test 66 6.3 Integration Test of Supercapacitor and Fuel Cell System 71 Chapter 7 Conclusions and Future Works 74 7.1 Discussion and Conclusion 74 7.2 Future works 75 Bibliography 76

    [1] Tom Markvart, “Microgrids: Power Systems for the 21st Century?,” University of Southamptom, UK, 2006.
    [2] B. Kroposki, T. Basso and R. DeBlasio, “Microgrid Standards and Technologies,” Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, pp. 1-4.
    [3] R. H. Lasseter, “Microgrids,” Power Engineering Society Winter Meeting, Vol 1, pp. 305-308, 2002.
    [4] J. P. Barton and D.G. Infield, “Energy Storage and Its Use with Intermittent Renewable Energy,” IEEE Transactions on Energy Conversion, Vol. 19, pp. 411-448, 2004.
    [5] Gang Ma, Wenlong Qu, Gang Yu, Yuanyuan Liu, Ningchuan Liang, and Wenzhong Li, “A Zero-Voltage-Switching Bidirectional DC–DC Converter with State Analysis andSoft-Switching-Oriented Design Consideration,” IEEE Transactions on Industrial Electronics, Vol. 56, no. 6, June 2009.
    [6] A.S. Samosir and A.H.M. Yatim, “Implementation of Dynamic Evolution Control of Bidirectional DC–DC Converter for Interfacing Ultracapacitor Energy Storage to Fuel-Cell System,” IEEE Transactions on Industrial Electronics, Vol. 57, pp. 3468-3473, 2010.
    [7] A. F. Burkel, “Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles,” Proceedings of the IEEE, Vol. 19, no. 4, April 2007.
    [8] Y. F. Li, M. F. Tsai, C. S. Tseng, and Y. F. Chiang, “Model Reference Adaptive Control Design for the Buck-Boost Converter,” IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society , pp. 543-548, 2012.
    [9] V.Fernao Pires and J.Fernando Silva, “Half-bridge single-phase buck-boost type AC-DC converter with sliding-mode control of the input source current,” IEE Proc. Electric Power Appl., vol. 147, no. 1, pp. 61-67, Jan. 2000.
    [10] C. L. Chu and Y. Chen, “ZVS-ZCS bidirectional full-bridge DC-DC converter,” Proc. IEEE PEDS, 2009, pp. 1125–1130.
    [11] E. S. Kim, T. 1. Kim, Y. B. Byun,T. G. Koo, Y. H. Kim, “High Power Full Bridge DC-DC Converter using Digital-to-Phase-Shift PWM Circuit”, Power Electronics Specialists Conference (PESC), vol. I, pp.221-225, June 2001.
    [12] N. M. L. Tan, T. Abe, and H. Akagi, “A 6-kW, 2-kWh Lithium-Ion battery energy storage system using a bidirectional isolated DC-DC converter, ” Power Electronics Conference (IPEC), 2010 International, 2010, pp. 46-52.
    [13] Kotz, R. and M. Carlen (2000). “Principles and applications of electrochemical capacitors,” Electrochemical Acta 45(15-16): 2483-2498.
    [14] C. C. Yang, “Design and Implementation of a Bidirectional Isolated DC-DC Converter for Renewable Energy Storage Systems,” Thesis for Master of Science, Electrical Engineering Dept., National Cheng Kung University, 2012.
    [15] K. J. Zhang, “Study on Fuel Cell as Base-Load Backup Supply for Micro-Grid,” Thesis for Master of Science, Electrical Engineering Dept., National Cheng Kung University, 2013.
    [16] C. Wang and M. H. Nehrir, “Power management of a stand-alone wind/photovoltaic/fuel cell energy system,” IEEE Trans. Energy Convers.,vol. 23, no. 3, pp. 957–967, Sep. 2008.
    [17] H. Qin and J. Kimball, “Closed-loop control of dc-dc dual active bridge converters driving single-phase inverters,” Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 173–179.
    [18] G. Oritz, H. Uemura, D. Bortis, J. W. Kolar, and O. Apledoorn, “Modeling of soft-switching losses of IGBTs in high-power high-efficiency dual active-bridge DC/DC converters,” IEEE Trans. Electron Devices, vol. 60,no. 2, pp. 587–597, Feb. 2013.
    [19] F. Krismer and J. Kolar, “Efficiency-optimized high current dual active bridge converter for automotive applications,” IEEE Trans. Ind. Electron.,2011.
    [20] G. G. Oggier, G. O. Garcia, and A. R. Oliva, “Switching control strategy to minimize dual active bridge converter losses,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1826–1838, Jul. 2009.
    [21] W. W. A. G. Silva, P. F. Donoso-Garcia, S. I. Seleme Jr., T. R. Oliveira1, C. H. G. Santos and A. S. Bolzon, “Study of the Application of Bidirectional Dual Active Bridge Converters in DC Nanogrid Energy Storage Systems,” Power Electronics Conference (COBEP), 2013 , pp. 609-614.
    [22] H. Qin and J. W. Kimball, “Generalized average modeling of dual active bridge DC-DC converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2078–2084, Apr. 2012.
    [23] YEC Company Website. Available: http://www.icd-sales.com/
    [24] T. Instruments, “TMS320x2833x Analog-to-Digital Converter(ADC) Module,” p. Reference Guide SPRU812A, October 2007.
    [25] Fuji Electric , “富士IGBTIPM應用手冊,” 2004.
    [26] T. Instruments, “TMS320x2833x, 2823x Enhanced Pulse Width Modulator (ePWM) Module,” p. Reference Guide SPRUF04A, July 2009.

    下載圖示 校內:2019-08-20公開
    校外:2019-08-20公開
    QR CODE