簡易檢索 / 詳目顯示

研究生: 王士誠
Wang, Shih-cheng
論文名稱: 不連續追蹤軌跡之輸入限制線性系統的反覆學習控制:符號函數方法
Iterative Learning Control of MIMO Linear System under Control Constraint Based on Sign Function for Discontinuous References
指導教授: 蔡聖鴻
Tsai, Sheng-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 67
中文關鍵詞: 符號函數反覆學習控制不連續函數多輸入多輸出
外文關鍵詞: Iteration learning control, Sign Function, Discontinuous function, Multi Input Multi Output
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文鑑於最佳化控制的控制輸入訊號很高,因此提出一個利用sign function algorithm建構於最佳化控制基礎上,利用線性二次式調整器技術和具高增益特性去得到一個輸入飽和限制值,且具有良好的追蹤效能。將良好的控制輸入當作開迴路反覆學習控制器的第一代追蹤器,在第一代的訓練中即可得到不錯的效能,再經由學習控制法則的疊代可以使暫態和穩態都具有良好的追蹤效能,且能改善傳統反覆學習控制得代數收斂及輸入飽和限制值。另外,我們提出一個解決反覆學習控制法則不連續函數且不可微分的方法,利用泰勒級數展開式趨近一個不連續函數的正確值。最後,我們提出個多輸入多輸出的例子,說明我們所提出方法的可行性。

    In view of the optimal control whose control input signal is very large in the thesis, we present a sign function algorithm based on the foundation of optimal control using linear quadratic regulator and high gain property to get an input saturation value, and supplies a good tracking performance. Then, take this good control input to be as first iteration of open loop iterative learning controller, it can get as well as performance in the first training iteration, and supplies a good tracking performance in both the transient and steady-state phase. Moreover, the method improves convergence and input saturation value in traditional iteration learning control. Besides, we present a method to overcome discontinuous and non-differentiable function in iterative learning control update rule, using Taylor series expansion to approach a correct value. Finally, MIMO numerical example is given to illustrate the effectiveness and the feasibility of the proposed method.

    中文摘要 I Abstract II List of Contents I V List of Figures V I List of Tables V III Chapter 1. Introduction 1-1 2. The Optimal Linear Model of the Sign Function 2-1 2.1 Introduction 2-2 2.2 Sign Function 2-2 2.3 SISO system input saturation 2-7 2.4 MIMO system input saturation 2-13 2.5 An illustrative example 2-16 3. Iterative Learning Control for a Class of Nonlinear Systems 3-1 3.1 Introduction 3-2 3.2 The design of ILC controller 3-2 3.3 The ILC scheme 3-4 4. ILC-Based LQAT with Sign Function via Numerical Methods for Discontinuous Reference and Linear System 4-1 4.1 Introduction 4-1 4.2 Numerical difference approximations 4-2 4.3 Using Taylor Expansion 4-5 4.4 ILC-based LQAT with sign function via numerical method for discontinuous reference and linear system 4-12 4.5 An illustrative example 4-14 5. Conclusion 5-1 References R1

    [1] L.S. Shieh, Y.T. Tsay and R.E. Yates, “Some properties of matrix sign functions derived from continued fractions,” Proc IEE 130, Pt. D, 3, pp. 111-118, 1983
    [2] L.S. Shieh, Y.T. Tsay and R.E. Yates, “Some properties of matrix sign functions derived from continued fractions,” Proc IEE 130, Pt. D, 3, pp. 111-118, 1983
    [3] L.S. Shieh, J.S.H. Tsai “The generalize matrix sector function and separation of matrix eigenvalues,” IMA Journal of Mathematical Control and Information, vol. 2, pp. 251-258, 1985
    [4] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Trans. on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47, no. 11, pp.1557-1570, Nov. 2000.
    [5] S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering operation of robots by learning,” J. Robotic Syst., vol. 1, pp. 123-140, 1984.
    [6] H. S. Ahn, C.H. Choi and K. B. Kim, “Iterative learning control for a class of nonlinear systems,” Automatica, vol. 29, no. 6, pp. 1575-1578, 1993.
    [7] T. Y. Kuc, J. S. Lee and K. Nam, “An iterative learning control theory for a class of nonlinear dynamic systems,” Automatica, vol. 28, no. 6, pp. 1215-1221, 1992.
    [8] J. X. Xu and Z. Qu, “Robust iterative learning control for a class of nonlinear systems,” Automatica, vol. 34, pp. 983-988, 1998.
    [9] S. Arimoto, “Learning control theory for robotic motion,” International Journal of Adaptive Control and Signal Processing, vol. 4, pp. 54-564, 1990.
    [10] A. Tayebi and J. X. Xu, “Observer-based iterative learning control for a class of time-varying nonlinear systems,” IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Application, vol. 50, no.3, pp. 452-455, 2003.
    [11] K. L. Moore, “Iterative learning control: an expository overview,” Appl. & Comput.l Contr., Signal Processing, Circuits, vol. 1, pp. 151-214, 1998.
    [12] A. Tayebi and J. X. Xu, “Observer-based iterative learning control for a class of time-varying nonlinear systems,” IEEE Transactions on Circuits and Systems, vol. 50, no.3, pp. 452-455, 2003.
    [13] Y. Chen, C Wen, Z. Gong and M. Sun, “An iterative learning controller with initial state learning,” IEEE Trans. Automat. Contr., vol. 44, pp. 371-376, Feb. 1999.
    [14] T. W. S. Chow, X. D. Li and Y. Fang, “A real-time learning control approach for nonlinear continuous-time system using recurrent neural networks,” IEEE Trans. Indus. Electr. Vol. 47, pp.478-486, Apr. 2000.
    [15] Y. H. Kim and I. J. Ha, “ Asymptotic state tracking in a class of nonlinear systems via learning-based inversion,” IEEE Trans. Automat. Contr., vol. 45, pp. 2011-2027, Nov. 2000.
    [16] M. Sun and D. Wang, “Sampled-data iterative learning control for nonlinear systems with arbitrary relative degree,” Automatica, vol. 37, no. 11, pp. 283-289, 2001.
    [17] P. Jiang and R. Unbehauen, “Iterative learning neural network control for nonlinear system trajectory tracking,” Neurocomputing, vol. 48, no.1-4, pp. 141-153, Oct. 2002.
    [18] Y. P. Tian and X. Yu, “Robust learning control for a class of nonlinear systems with periodic and aperiodic uncertainties,” Automatica, vol. 39, no. 11, pp. 1957-1966, 2003.
    [19] J. X. Xu and R. Yan, “Iterative learning control design without a priori knowledge of the control direction,” Automatica, vol. 40, no. 10, pp. 1803-1809, Oct. 2004.
    [20] R. Rajamani, “Observers for Lipschitz nonlinear systems,” IEEE Trans. Automat. Contr., vol. 43, pp. 397-401, Mar. 1998.
    [21] A. Taybei and J. X. Xu, “Observer-based iterative learning control for a class of time-varying nonlinear systems,” IEEE Transcations on Circuts and Systems-I, Fundamental Theory and Application, vol. 50, no.3, pp. 452-455, 2003.
    [22] S. Nakamura, Applied Numerical Meyhods with Software, New Jersey: Prentice-Hall, 1991

    下載圖示 校內:2009-08-05公開
    校外:2009-08-05公開
    QR CODE