簡易檢索 / 詳目顯示

研究生: 楊文龍
Yong, Men-Lung
論文名稱: 具自動平衡之新型七階層耦合電感式換流器研製
Study and Implementation of a Novel Self-Balancing Seven-Level Inverter with Coupled Inductor
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 68
中文關鍵詞: 七階層換流器耦合電感電壓自動平衡
外文關鍵詞: seven-level inverter, coupled inductor, self-balancing
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於研製一新型自動平衡單相七階層耦合電感式換流器,利用兩顆輸入電容達到七階層電壓輸出,而透過串聯儲能與並聯釋能即可實現電容電壓平衡。與同樣階層數的傳統架構相比,此新架構擁有元件較少以及電容電壓自動平衡之特性,無須添加任何的平衡電路或複雜的控制法,因此具有高功率密度,電路體積小、成本低及低輸出電壓總諧波失真率等優點。文中將說明本電路架構之動作原理及控制流程。最後本文設計一輸入直流電壓360 V及輸出功率3 kW之實作電路,驗證本文所提出之理論正確性與可行性;控制部份是以數位訊號處理器(TMS320F28035)為控制核心。

    In this thesis, a novel self-balancing single-phase seven-level inverter with coupled inductor is proposed. The proposed inverter can generate seven-level voltage with only two capacitors, and there are series charged and parallel discharged path to auto balance. Compared with the same level traditional inverter topologies, this new topology uses less components and achieves voltage balance without any voltage-balancing circuit or complex control method, so higher power density and smaller size of circuit can be realized. The total harmonic distortion of the output voltage is low. Finally, a 3 kW laboratory prototype inverter with input voltage 360 V is proposed to verify the theoretical analysis and the performance. The control scheme is implemented by DSP (Digital Signal Processor) TMS320F28035.

    中英文摘要 I 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究內容 1 1.3 論文大綱 3 第二章 多階層換流器之架構介紹與應用 4 2.1 前言 4 2.2 多階層換流器架構介紹 4 2.2.1 二極體箝位式多階層換流器 7 2.2.2 飛輪電容式多階層換流器 10 2.2.3 疊接式多階層換流器 12 2.2.4 簡易型多階層換流器 14 2.2.5 具電壓平衡電路之五階層二極體箝位式換流器 15 2.2.6 耦合電感式多階層換流器 18 2.2.7 各式多階層換流器之比較 19 2.3 正弦脈波寬度調變切換技術 20 第三章 新型七階層耦合電感式換流器 22 3.1 前言 22 3.2 新型七階層耦合電感式換流器電路架構 22 3.2.1 新型七階層耦合電感式換流器之雛形電路架構 22 3.2.2 新型七階層耦合電感式換流器之電路架構 23 3.3 耦合電感動作原理 25 3.4 新型電容電壓平衡架構 27 3.5 新型七階層耦合電感式換流器之模式分析 28 3.6 相位配置脈波寬度調變 40 第四章 模擬與實驗結果 47 4.1前言 47 4.2 元件參數設計 49 4.2.1 耦合電感設計 49 4.2.2 輸入電容設計 50 4.2.3 低通濾波器設計 50 4.3 模擬結果 51 4.4 實驗結果 56 第五章 結論與未來研究方向 63 5.1 結論 63 5.2 未來研究方向 64 參考文獻 65 表目錄 表2.1 三階層二極體箝位式換流器之動作模式 8 表2.2 三階層飛輪電容式換流器之動作模式 10 表2.3 三階層全橋式換流器之動作模式 12 表2.4 簡易型五階層換流器之動作模式 14 表2.5 五階層耦合電感式換流器之動作模式 19 表2.6 七階層換流器之元件數比較表 20 表3.1 新型七階層耦合電感式換流器之開關導通狀態 30 表4.1 系統電路規格表 48 表4.2 本文架構之元件規格與參數 49 圖目錄 圖2.1 多階層換流器之概念圖 5 圖2.2 全橋式換流器 5 圖2.3(a) 全橋式換流器單極性控制法之輸出電壓 6 圖2.3(b) 全橋式換流器雙極性控制法之輸出電壓 6 圖2.4 三階層二極體箝位式換流器 7 圖2.5 七階層二極體箝位式換流器 9 圖2.6 三階層飛輪電容式換流器 10 圖2.7 七階層飛輪電容式換流器 11 圖2.8 三階層全橋式換流器 12 圖2.9 七階層疊接式換流器 13 圖2.10 簡易型五階層換流器 14 圖2.11 簡易型七階層換流器 15 圖2.12 具電壓平衡電路之五階層二極體箝位式換流器 16 圖2.13 電壓平衡電路 (a)模式A(b)模式B 17 圖2.14 五階層耦合電感式換流器 18 圖2.15 正弦波寬度調變控制法方塊圖 21 圖2.16 正弦波寬度調變法示意圖 21 圖3.1 新型七階層耦合電感式換流器之雛形電路架構 23 圖3.2(a) 新型七階層耦合電感式換流器 24 圖3.2(b) 七階層換流器輸出波形示意圖 25 圖3.3 耦合電感 26 圖3.4 新型電容電壓平衡架構 28 圖3.4(a) 電容C1電壓高於電容C2之電流路徑圖 28 圖3.4(b) 電容C2電壓高於電容C1之電流路徑圖 29 圖3.4(c) 電容C1與電容C2電壓相等之電流路徑圖 29 圖3.5(a) 輸出電壓vo=3Vdc/2之開關狀態與電流路徑 31 圖3.5(b) 輸出電壓vo=3Vdc/2之開關狀態與電流路徑 32 圖3.5(c) 輸出電壓vo=3Vdc/2之開關狀態與電流路徑 32 圖3.6 輸出電壓vo=Vdc之開關狀態與電流路徑 33 圖3.7 輸出電壓vo=Vdc/2之開關狀態與電流路徑 34 圖3.8 輸出電壓vo=Vdc/2之開關狀態與電流路徑 34 圖3.9 輸出電壓vo=0之開關狀態與電流路徑 35 圖3.10 輸出電壓vo=0之開關狀態與電流路徑 36 圖3.11 輸出電壓vo=-Vdc/2之開關狀態與電流路徑 36 圖3.12 輸出電壓vo=-Vdc/2之開關狀態與電流路徑 37 圖3.13 輸出電壓vo=-Vdc之開關狀態與電流路徑 38 圖3.14(a) 輸出電壓vo=-3Vdc/2之開關狀態與電流路徑 38 圖3.14(b) 輸出電壓vo=-3Vdc/2之開關狀態與電流路徑 39 圖3.14(c) 輸出電壓vo=-3Vdc/2之開關狀態與電流路徑 40 圖3.15 程式撰寫相位分段配置脈波寬度調變切換技術之流程圖 42 圖3.16 相位分段配置脈波寬度調變之切換技術示意圖 43 圖4.1 新型七階層耦合電感式換流器之整體電路示意圖 48 圖4.2 新型七階層耦合電感式換流器之模擬電路圖 52 圖4.3 新型七階層耦合電感式換流器之模擬控制訊號圖 52 圖4.4 新型七階層耦合電感式換流器之v12模擬圖 53 圖4.5 新型七階層耦合電感式換流器之vo、vC1、vC2模擬圖 53 圖4.6 功率開關元件vce1、vce2、vce3與vce4模擬圖 54 圖4.7 功率開關元件vce5、vce6、vce7與vce8模擬圖 54 圖4.8 功率開關元件ice1、ice2、ice3與ice4模擬圖 54 圖4.9 功率開關元件ice5、ice6、ice7與ice8模擬圖 55 圖4.10 二極體vD1、vD2、vD3與vD4模擬圖 55 圖4.11 二極體iD1、iD2、iD3與iD4模擬圖 56 圖4.12 功率開關vge1、vge2、vge3與vge4之控制訊號 56 圖4.13 功率開關vge5、vge6、vge7與vge8之控制訊號 57 圖4.14 輸出功率25%之v12、vo、vC1與vC2波形 58 圖4.15 輸出功率50%之v12、vo、vC1與vC2波形 58 圖4.16 輸出功率75%之v12、vo、vC1與vC2波形 59 圖4.17 輸出功率100%之v12、vo、vC1與vC2波形 59 圖4.18 輸出功率100%之v12、vo、io與ice7波形 60 圖4.19 輕載輸出電壓總諧波失真率圖(Po=496W, THD=0.55%) 61 圖4. 20 重載輸出電壓總諧波失真率圖 (Po=2. 966kW, THD=0. 42%) 61 圖4.21 新型七階層耦合電感式換流器電路之效率圖 62 圖4.22 實體電路圖 62

    [1] C. L. Chen, Y. W, J. S. Lai, Y.S. Lee, and D. Martin, “Design of Parallel Inverters for Smooth Mode Transfer Microgrid Applications,” IEEE Trans. on Power Electronics, vol. 25, no. 1, pp. 6-15, Jan. 2010.
    [2] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, Ma. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Trans. on Industrial Electronics, vol. 53, no.4, pp. 1002-1016, Aug. 2006.
    [3] J. Schonberger, R. Duke, and S. D. Round, “DC-Bus Signaling: A Distributed Control Strategy for a Hybrid Renewable Nanogrid,” IEEE Trans. on Industrial Electronics, vol. 53, no. 5, pp. 1453-1460, October 2006.
    [4] J. S. Lai and F. Z. Peng, “Multilevel Converters–A New Breed of Power Converters,” IEEE Trans. on Industrial Application, vol. 32, pp. 509–517, May/June 1996.
    [5] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel Inverters: A Survey of Topologies, Controls, And Applications,” IEEE Trans. on Industrial Electronics, vol. 49, no. 4, pp. 724–738, Aug. 2002.
    [6] M. Marchesoni and P. Tenca, “Diode-Clamped Multilevel Converters: A Practicable Way to Balance DC-Link Voltages,” IEEE Trans. on Industrial Electronics vol. 49, no. 4, pp. 752-765, Aug. 2002.
    [7] 林政達, 「數位式市電並聯型換流器與快速鎖相迴路控制器之研製」 國立雲林科技大學電機工程系碩士論文, 2003.
    [8] A. Nabae, I. Takahashi and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Trans. on Industry Applications, vol. IA-17, no. 5, pp. 518-523, Sep. 1981.
    [9] X. Yuan and I. Barbi, “Fundamentals of a New Diode Clamping Multilevel Inverter,” IEEE Trans. on Power Electronics, vol. 15, no. 4, pp.711-718, Jul. 2000.
    [10] S. S. G. Jayasinghe, D. M. Vilathgamuwa, and U. K. Madawala, “Diode-Clamped Three-Level Inverter-Based Battery/Supercapacitor Integration Scheme for Renewable Energy Systems,” IEEE Trans. on Power Electronics, vol. 26, no. 12, pp.3720-3729, Dec. 2011.
    [11] M. Marchesoni and P. Tensa, “Diode-Clamped Multilevel Converters: A Practicable Way to Balance DC-Link Voltages,” IEEE Trans. on Industrial Electronics, vol. 49, no. 4, pp. 752 - 765, Aug. 2002.
    [12] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim, and D. S. Hyun, “A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of Flying-Capacitor Multilevel Inverter,” IEEE Trans. on Industrial Electronics, vol. 52, no. 3, pp. 879-888, Jun. 2005.
    [13] M. Khazraei, H. Sepahvand, K. A. Corzine, and M. Ferdowsi, “Active Capacitor Voltage Balancing in Single-Phase Flying-Capacitor Multilevel Power Converters,” IEEE Trans. on Industrial Electronics, vol. 59, no. 2, pp.769-778, Feb. 2012.
    [14] J. Huang and K. A. Corzine, “Extended Operations of Flying-capacitor Multilevel Inverters,” IEEE Trans. on Power Electronics, vol. 21, no. 1 pp.140-147, Jan. 2006.
    [15] N. Maheshkumar, V. Maheskumar, and M. E. M. Divya, “The New Topology in Flying Capacitor Multilevel Inverter,” in Proc. IEEE on International Conference on Computer Communication and Informatics (ICCCI), 2013.
    [16] K. Sano and H. Fujita, “Voltage-Balancing Circuit Based on a Resonant Switched-Capacitor Converter for Multilevel Inverters,” IEEE Trans. on Industry Applications, vol. 44, no. 6, pp. 1768-1776, Nov. 2008.
    [17] P. Lezana, J. Rodriguez, and D. A. Oyarzun, “Cascaded Multilevel Inverter with Regeneration Capability and Reduced Number of Switches,” IEEE Trans. on Industrial Electronics, vol. 55, no. 3, pp. 1059–1066, Mar. 2008.
    [18] Y. Hinago and H. Koizumi, “A Switched-Capacitor Inverter Using Series/Parallel Conversion With Inductive Load,” IEEE Trans. on Industrial Electronics, vol. 57, no. 8, pp. 2643-2650, Aug. 2010.
    [19] R. Seyezhai and B. L. Mathur, “Hybrid Cascaded H-Bridge Multilevel Inverter for Fuel Cell Power Conditioning Systems,” in Proc. IEEE on UPEC, pp. 1-5, Sep. 2008.
    [20] G. Ceglia, V. Guzman, C. Sanchez, F. Ibanez, J. Walter, and M. I. Gimenez, “A New Simplified Multilevel Inverter Topology for DC-AC Conversion,” IEEE Trans. on Power Electronics, vol. 21, no. 5, pp. 1311-1319, Sep. 2006.
    [21] E. Najafi and A. H. M. Yatim, “Design and Implementation of a New Multilevel Inverter Topology,” IEEE Trans. on Industrial Electronics, volume: 59, no. 11, pp. 4148-1454, Nov. 2012.
    [22] B. P. McGrath and D. G. Holmes, “Natural Capacitor Voltage Balancing for a Flying Capacitor Converter Induction Motor Drive,” IEEE Trans. on Power Electronics, vol. 24, no. 6 pp.1554-1561, Jun. 2009.
    [23] Y. Cho, T. LaBella, and M. Senesky, “A Carrier Based Neutral Voltage Modulation Strategy for Multilevel Cascaded Inverter under Unbalanced DC Sources,” IEEE Trans. on Industrial Electronics, volume: pp, issue: 99.
    [24] K. Hasegawa and H. Akagi, “A New DC-Voltage Balancing Circuit Including a Single Coupled Inductor fo a Five-Level Diode-Clamped PWM Inverter,” IEEE Trans. on Industry Applications, vol. 47, no. 2, pp.841-852, Mar. 2011.
    [25] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim. And D. S. Hyun, “A Symmetric carrier technique of CRPWM for Voltage Balance Method of Flying-Capacitor Multilevel Inverter,” IEEE Trans. on Industrial Electronics, vol. 52, no. 3, pp. 879–888, Jun. 2005.
    [26] R. Lai, F. Wang, R. Burgos, and D. Boroyevich, “Voltage Balance Control of Non-Regenerative Three-Level Boost Rectifier Using Carrier-Based Pulse Width Modulation,” in Proc. IEEE on Power Electronics Specialists Conference (PESC), pp. 3137-3142, 2008.
    [27] Z. Zhang, Y. X. Xie, W. P. Huang, J. Y. Le, and L. Chen, “A New SVPWM Method for Single-Phase Three-Level NPC Inverter and the Control Method of Neutral Point Voltage Balance,” in Proc. IEEE on International Conference on Electrical Machines and Systems (ICEMS), pp.1-4, 2009.
    [28] R. Stala, “Application of Balancing Circuit for DC-Link Voltages Balance in a Singe-Phase Diode-clamped Inverter with Two Three-Level Legs,” IEEE Trans. on Industrial Electronics, vol. 58, no. 9, pp. 4185-4195, Sep. 2011.
    [29] R. Stala, “A Natural DC-Link Voltage Balancing of Diode-Clamped Inverters in Parallel Systems,” IEEE Trans. on Industrial Electronics, vol. pp, issue: 99, 2012.
    [30] A. Shukla, A. Ghosh, and A. Joshi, “Flying-Capacitor-Based- Chopper Circuit for DC Capacitor Voltage Balancing in Diode-Clamped Multilevel Inverter,” IEEE Trans. on Industrial Electronics, vol. 57, no. 7, pp. 2249–2261, Jul. 2010.
    [31] Z. X. Li, P. Wang, Y. H. Li, and F. Q. Gao, “A Novel Single-Phase Five-Level Inverter with Coupled Inductors,” IEEE Trans. on Power Electronics, vol. 27, no. 6, pp. 2716-2725, Jun. 2012.
    [32] B. P. McGrath and D. G. Holmes, “Enhanced Voltage Balancing of a Flying Capacitor Multilevel Converter Using Phase Disposition (PD) Modulation,” IEEE Trans. on Power Electronics, vol. 26, no. 7, pp. 1933-1942, Jul. 2011.
    [33] H. Bayat, J. S. Moghani, S. H. Fathi, and M. Taheri, “Reduction of Switching Frequency Using Reference Phase Disposition PWM Technique in Multilevel H-Bridge Inverters,” 2011 2nd Power Electronics, Drive Systems and Technologies Conference.
    [34] P. W. Sun, C. Liu, J. S. Lai, and C. L. Chen, “Cascade Dual Buck Inverter With Phase-Shift Control,” IEEE Trans. on Power Electronics, vol. 27, no. 4, pp. 2067-2077, Apr. 2012.
    [35] Y. Liu and X. He, “PDM and PFM Hybrid Control of a Series-resonant Inverter for Corona Surface Treatment,” IEE Proc.- Electronics Power Applications, vol. 152, no. 6, pp. 1445-1450, Nov. 2005.

    無法下載圖示 校內:2018-07-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE