| 研究生: |
李承育 Li, Cheng-Yu |
|---|---|
| 論文名稱: |
以乳化超臨界二氧化碳電鍍法沉積填充高深寬比微孔洞之研究 Emulsified supercritical CO2 electrodeposition for high aspect ratio micro-hole filling |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 超臨界二氧化碳 、電沉積 、高深寬比 |
| 外文關鍵詞: | supercritical CO2, electrodeposition, high aspect ratio |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以乳化超臨界二氧化碳電鍍法,於高深寬比之微孔中沉積鎳-磷合金鍍層,評估在無添加促進劑及抑制劑的鍍浴中,進行超填充的可行性。研究中亦探討電流密度、系統壓力及微孔孔徑的改變,對微孔基材上鍍層均勻性的影響。本研究採用的微孔模具有兩種,分別是以金屬孔加工的方式製備之黃銅模具,孔徑為250 μm、500 μm與750 μm,以及雷射鑽孔加工之氧化鋁基板,孔徑為50 μm。實驗結果顯示,以乳化超臨界二氧化碳電鍍法在銅模微孔中所沉積之鍍層,其微孔內外的鍍層厚度差值較常壓電鍍法所披覆之鍍層差為小,顯示利用該製程可獲得披覆均勻的鍍層。當微孔之孔徑尺寸小於500 μm時,以傳統鍍浴無法將鎳-磷鍍層披覆於微孔中。若將傳統鍍浴與超臨界二氧化碳乳化後,降低鍍浴之表面張力,可有效於微孔中披覆鎳-磷合金鍍層。另外,在雙向導電微孔模具,以乳化超臨界二氧化碳電鍍法沉積鎳-磷合金鍍層具有較常壓製程優異的填孔效率,但仍無法將微孔完全填滿。若改用單向導電微孔模具,並在適當的電流密度以及製程配合下,可以有效避免微孔提早被封閉導致無法填滿的問題。証實從底部以單方向沉積電鍍法,於乳化超臨界二氧化碳鍍浴中,可將微孔完全填滿。
In this study, Ni-P coatings electrodeposited into high-aspect-ratio micro-holes via emulsified supercritical carbon dioxide (sc-CO¬2) bath without accelerator and inhibitor addition to evaluate the possibility of super-filling. The effect of current density, pressure of electroplating system and diameter of micro-holes on the uniformity of the coating deposited on micro-hole substrate were also investigated. There are two types of micro-hole mold in this research, such as drilled brass micro-hole mold (φ = 250 μm, 500 μm, and 750 μm) and laser-drilled Al2O3 micro-hole mold (φ = 50 μm) . The experimental results showed that the difference in thickness between inside and outside layer of brsss micro-holes, which was deposited in emulsified sc-CO2 bath, was smaller than that fabricated in conventional electroplating process. It revealed that the uniform coating could be obtained by the sc-CO2 electroplating process. The Ni-P alloy coating couldn’t be deposited in conventional bath, while the diameter of the brass micro-hole was below 500 μm. In contrary, the Ni-P alloy coating was successfully deposited on the micro-hole, due to its low surface tension. In addition, the Ni-P coating deposited on double-side conductive micro-hole mold in emulsified sc-CO2 bath exhibits the better filling efficiency as compared to that deposited in conventional bath but it still cannot achieve super-filling condition. If the conductive layer of micro-hole was modified to single-side, the existence of voids and seams could be precluded, which resulted from mouth of micro-hole sealing before completely micro-hole filling. The results demonstrate that the micro-hole could be completely bottom-up filled via emulsified sc-CO2 electrodeposition method.
[1] Zheyao Wang, Lianwei Wang, N. T. Nguyen, Wim A. H. Wien, Hugo Schellevis, Pasqualina M. Sarro, “Silicon Micromachining of High Aspect Ratio, High-Density Through-Wafer Electrical Interconnects for 3-D Multichip Packaging”, IEEE Transactions on Advanced Packaging, 29 (2006) 615
[2] J. K. Luo, D. P. Chu, A. J. Flewitt, S. M. Spearing, N. A. Fleck, W. I. Milne, “Uniformity Control of Ni Thin-Film Microstructures Deposited by Through-Mask Plating” , Journal of The Electrochemical Society, 152 (2005) C36-C41.
[3] N. Watanabe; M. Suda, K. F'uruta, T. Sakusara, “Fabrication of Micro Parts Using Only Electrochemical Process” ,IEEE, (2001) 143-146.
[4] J. Prokop, G. Finnah, J. Lorenz, V. Piotter, R. Ruprecht, J. Hausselt, “Manufacturing process for high aspect ratio metallic micro parts made by electroplating on partially conductive templates” Microsystem Technology, 14 (2008) 1669–1674.
[5] Masanori Hayase, Munemasa Taketani, Koji Aizawa, Takeshi Hatsuzawa, Keisuke Hayabusa, “Copper Bottom-up Deposition by Breakdown of PEG-Cl Inhibition” Electrochemical and Solid-State Letters, 5 (2002) C98-C101.
[6] James J. Kelly, Alan C. West, “Copper Deposition in the Presence of Polyethylene Glycol” Journal of The Electrochemical Society, 145 (1998) 3477-3481.
[7] Chang Hwa Lee, Sang Chul Lee, and Jae Jeong Kim, “Improvement of Electrolessly Gap-Filled Cu Using 2,2-Dipyridyl and Bis-(3-sulfopropyl)-disulfide (SPS)”, Electrochemical and Solid-state Letter, 8 (2005) C110-C113.
[8] Qianwen Chen, Zheyao Wang, Jian Cai, Litian Liu, “Microelectronic Engineering, 87 (2010) 527-531
[9] Katsuhiro OTA, Atsushi TSUTSUMI, “Supercritical CO2-pulse cleaning in deep micro-holes” Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2 (2008) 619-628.
[10] Pakavadee Ratanajiajaroen , Masahiro Ohshima, “Preparation of highly porous β-chitin structure through nonsolvent-solvent exchange-induced phase separation and supercritical CO2 drying”, J. of Supercritical Fluids, 68 (2012) 31-38.
[11] Alessandra Piras, Antonella Rosa, Bruno Marongiu, Angela Atzeri, M. Assunta Dess., Danilo Falconieri, Silvia Porcedda, “Extraction and Separation of Volatile and Fixed Oils from Seeds of Myristica fragrans by Supercritical CO2 : Chemical Composition and Cytotoxic Activity on Caco-2 Cancer Cells”, Journal of Food Science, 77 (2012) C448-C453.
[12] Hideo Yoshida, Masato Sone, Hiroaki Wakabayashi, Hao Yan, Kentaro Abe, Xu Tang Tao, Aya Mizushima, Shoji Ichihara, Seizo Miyata, “New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film”, Thin Solid Films, 446 (2004) 194–199.
[13] Sung-Ting Chung, Yan-Chi Chuang, Shih-Yi Chiu, Wen-Ta Tsai, “Effect of H3PO3 concentration on the electrodeposition of nanocrystalline Ni–P deposited in an emulsified supercritical CO2 bath” Electrochimica Acta, 58 (2011) 571– 577.
[14] Sung-Ting Chung, Wen-Ta Tsai, “Effect of pressure on the electrodeposition of nanocrystalline Ni–C in supercritical CO2 fluid”, Thin Solid Films, 518 (2010) 7236–7239
[15] H. Honma, “Plating technology for electronics packaging”Electrochimica Acta, 47 (2001) 3.
[16] J. W. Schultze, A. A. B., “Principle of electrochemical micro- and nano-system technologies”, Electrochimica Acta, 47 (2001) 3.
[17] F. Formark, N.T., T. Tanaka, “Selective electroless plating plating to fabricate complex three-dimensional metallic micro/nanostructures”, Applied Physics Letters, 88 (2006) 083110
[18] Brenner, Electrodeposition of Alloys, Vol.2, Academic, New York, (1963)
[19] T.Clifforo, “FUNDAMENTALS OF SUPERCRITICAL FLUIDS”, Unitied Kingdom: Oxford University Press, (1999).
[20] R. C. Reid, J. M. P., B. E. Poling, “The Properties of Gases and Liquids”, New York: McGraw-Hill, 1986
[21] J. R. Williams, A.A.C., S. H. R. Al-Saidi, “Supercritical Fluids and Their Applications in Biotechnology and Related Areas”, Molecular Biotechnology, 22 (2002) 263.
[22] J. A. Darr, M. Poliakoff., “New Directions in Inorganic and Meta-Organic Coordination Chemistry in Supercritical Fuilds”, Chemical Reviews, 99 (1999) 495-542.
[23] M. Lora, L.K., “Polymer processing with supercritical fluid: an overview”, Separation and purification methods, 28 (1999) 179.
[24] B. Subramaniam, R.A.R., K. Snavely, “Pharmaceutical Processing with Supercritical Carbon Dioxide”, Journal of Pharmaceutical Science, 86 (1997) 885.
[25] G. L. Weibel, C.K.O., “An overview of supercritical CO2 applications in microelectronics processing”, Microelectronic Engineering, 65 (2003) 145.
[26] P.Raveendran, Y.I., S. Wallen, “Polar Attributes of supercritical Carbon Dioxide”, Accounts of Chemical Research, 38 (2005) 478.
[27] W. Ryoo, S.E.W., K. P. Johnston, “Water-in-Carbon Dioxide Microemulsions with Methylated Branched Hydrocarbon Surfactants”, Industrial and Engineering Chemistry Research, 42 (2003) 6348.
[28] S. Kaneshina, O.S., M. Nakamura, “Effect of pressure on the cloud point of nonionic surfactant solutions and the solubilization of hydrocarbons”, Bulletin of the Chemical Society of Japan, 52 (1979) 42.
[29] Einaga, Y., “Phase Diagram of Dilute Micelle Solutions of Polyoxyethylene Alkyl Ethers”, Polymer Journal, 39 (2007) 1082.
[30] H. Yan, M. Sone, A. Mizushima, T. Nagai, K. Abe, S. Miayta, “Electroplating in CO2-in-water and water-in- CO2 emulsions using a nickel electroplating solution with anionic fluorinated Surfactant”, Surface and Coatings Technology, 187 (2004) 86.
[31] H. Yan, M. Sone, S. Miayta, N, Sato, S. Ichihara, “The effects of dense carbon dioxide on nickel plating using emulsion of carbon dioxide in electroplating solution”, Surface and Coatings Technology, 182 (2004) 329.
[32] M. S. Kim, C. K. Kim, “Nickel electroplating on copper substrate in plating solution containing high-density CO2”, Journal of Industrial and Engineering Chemistry, 11 (2005) 876.
[33] M. S. Kim, J. Y. Kim, C. K. Kim, N. K. Kim, “Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2”, Chemosphere, 58 (2005) 459.
[34] Mohamed Saadaoui, Henk van Zeijl, “Enhancing the Wettability of High Aspect-Ratio Through-Silicon Vias Lined with LPCVD Silicon Nitride or PE-ALD Titanium Nitride for Void-Free Bottom-Up Copper Electroplating”, IEEE Transactions on Components, Packaging and Manufacturing Technology, 1 (2011) 1728-1737
[35] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, H. Deligianni; “IBM Jounral of Research and Developement” ,42 (1998) 383
[36] Kazuo Kondo, Toshihiro Yonezawa, “High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking”, Journal of The Electrochemical Society, 152 (2005) H173-H177.
[37] Alvin H. Romang and James J. Watkins, “Supercritical Fluids for the Fabrication of Semiconductor Devices: Emerging or Missed Opportunities?”, Chemical Reviews, 110 (2010) 459–478.
[38] Jie Ke, Wenta Su, Steven M. Howdle, Michael W. George, David Cook, and Philip N. Bartlett, “Electrodeposition of metal from supercritical fluids”, PANS.106 (2009), 14768-14772.
[39] Philip N. Bartlett, David Cook, Michael W. George, Jie Ke, William Levason, and Gillian Reid, “”Physical Chemistry Chemical Physics 12 (2010), 492-501.
[40] Nao Shinoda, Tetsuya Shimizu, Tso-Fu Mark Chang, Akinobu Shibata, Masato Sone, “Cu electroplating using suspension of supercritical carbon dioxide in copper-sulfate-based electrolyte with Cu particles”, Thin Solid Films, 529 (2013) 29–33.
[41] F Santagata, C Farriciello, G Fiorentino, H W van Zeijl, C Silvestri, G Q Zhang, P M Sarro, “Fully back-end TSV process by Cu electro-less plating for 3D smart sensor systems”, Journal of Micromechanics and Microengineering, 23 (2013) 055014.
[42] Adam O’Neil, James J.Watkins, “Fabrication of device nanostructures using supercritical fluids” MRS BULLETIN, 30 (2005) 967-975.
[43] J. Dille, J. Charlier, R. Winand, “The structure and mechanical properties of thick cobalt electrodeposits” Journal of Materials Science, 32 (1997) 2637-2646
[44] O. E. Kongstein, G. M. Haarberg, J. Thonstad “Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature”, J. Appl. Electrochem. 37 (2007) 669–674.