簡易檢索 / 詳目顯示

研究生: 林曉彤
Lin, Hsiao-Tung
論文名稱: 應用於無線通訊之CMOS射頻微機電開關及2-GHz/5-GHz壓控振盪器RFIC之研究
Research on CMOS RF MEMS Switches and 2-GHz/5-GHz VCO RFICs for Wireless Communication Applications
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 112
中文關鍵詞: 壓控振盪器無線通訊微機電開關
外文關鍵詞: wireless communication, MEMS switch, VCO
相關次數: 點閱:90下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成兩部分,首先是使用TSMC 0.25um 1P5M CMOS製程研製CMOS射頻微機電開關,並以微機電製程技術中之表面微加工(surface micromachining)技術,對CMOS微機電開關進行後製程之步驟。透過乾式蝕刻移除0.25um製程中之IMD3與IMD4,來釋放以Metal3、Metal4及Metal5組成的結構層。由於後製程的機台故障問題,未能完成完整的後製程製作,故只附上未做後製程之量測結果:開關操作頻率為1 ~ 10GHz,ON state的return loss為9.8 ~ 18.4dB、insertion loss為0.9 ~ 4.8dB。
    第二部分是使用CMOS RFIC研製應用於無線通訊之2GHz與5GHz壓控振盪器。2GHz壓控振盪器採用TSMC 0.25um CMOS製程設計,包括一互補式VCO以及一加入差動調變MOS Varactor機制的VCO。2GHz互補式VCO輸出頻率為1970MHz ~ 2128MHz、輸出功率約為7.4dBm、相位雜訊為-101dBc/Hz@100kHz、主動埠消耗功率約22.5mW;差動調變MOS Varactor之2GHz VCO輸出頻率為1827MHz ~ 2136MHz、輸出功率約為8.2dBm、相位雜訊為-100.2dBc/Hz @100kHz、主動埠消耗功率約20mW。5GHz VCO的設計採用TSMC 0.18um CMOS製程,此外還與Motorola MC12210 PLL晶片整合成為5GHz頻率合成器。VCO量測結果為輸出頻率4517MHz ~ 4782MHz、輸出功率約為0 dBm、相位雜訊為-91.2dBc/Hz@100kHz、主動埠消耗功率約5mW;頻率合成器量測突波大小-58dBc,頻率切換時間在頻道跳躍20MHz時約為2.1ms。

    This thesis presents the research on CMOS RF MEMS switches and 2-GHz/5-GHz complementary and differentially tuned MOS-varactors CMOS VCO for wireless communication applications. The MEMS switch is fabricated in a TSMC standard 0.25um CMOS process and then post processed by surface micromachining in MEMS technology. Dry etching removes the IMD3 and IMD4 in the 0.25um CMOS process to release the structure layer composed of Metal3, Metal4 and Metal5. Due to the ICP machine problem, the post process cannot be finished. Here only measurement results of the return loss and insertion loss without post process are presented. The fabricated MEMS switch at ON-state exhibits a return loss from 9.8dB to 18.4dB and an insertion loss from 0.9 dB to 4.8 dB, respectively, while operating from 1 to 10GHz.
    The CMOS VCO are fabricated in TSMC standard 0.25um and 0.18um process. The 2GHz complementary VCO exhibits an output frequency from 1970 to 2128MHz, an output power of 7.4 dBm, and a phase noise is –101dBc/Hz@100kHz. The 2GHz complementary VCO with differentially tuned MOS varactors exhibits an output frequency from 1827 to 2136MHz, an output power of 8.2 dBm, and a phase noise is –100.2dBc/Hz@100kHz. The 5GHz VCO with differentially tuned MOS varactors exhibits an output frequency from 4517 to 4782MHz with phase noise of –91dBc/Hz@100kHz. The 5GHz VCO and Motorola MC12210 PLL chip are integrated into a 5GHz-frequency synthesizer. The synthesizer with a spur less than 58dBc has a settling time of 2.1ms for 20MHz step.

    第一章 緒論 Introduction 1 1.1 射頻微機電技術簡介 1 1.2 2.4GHz/5GHz WLAN射頻接收機架構之簡介 2 1.3 論文架構簡介 4 第二章 射頻微機電開關之研究 6 2.1 架構及操作原理 7 2.2 開關驅動原理:拉下電壓(Pull-Down Voltage) 9 2.3 電磁特性分析 12 2.4 直流接點之並聯式微機電開關 (TSMC 0.25um) 17 2.4.1 架構簡介 17 2.4.2 設計流程 19 2.4.3 後製程介紹與考量 21 2.4.4 模擬與量測結果 23 2.5 結果與討論 26 第三章 振盪器原理與相位雜訊之介紹 27 3.1 振盪原理 27 3.2 LC Tank (L-C諧振) 振盪器 28 3.2.1 起振條件(Startup Condition) 33 3.2.2 頻率可調範圍(Tuning Range) 34 3.2.3 功率損耗(power consumption) 40 3.3 相位雜訊(phase noise) 41 3.3.1 相位雜訊的定義 42 3.3.2 相位雜訊對通訊系統的影響 43 3.3.3 Q值對振盪器的影響 45 3.3.4 相位雜訊分析: (A)Thermally Induced Phase Noise 48 3.3.5 相位雜訊分析: (B)Flicker Noise Upconversion and Time Variant 54 3.4 總結 60 第四章 互補式及差動調變之CMOS壓控振盪器RFIC 61 4.1 2GHz互補式CMOS壓控振盪器 (TSMC 0.25um) 61 4.1.1 架構簡介 61 4.1.2 2GHz互補式 CMOS VCO設計與製作流程 63 4.1.3 模擬與量測結果 66 4.1.4 結果與討論 70 4.2 具差動調變MOS Varactor之2GHz CMOS壓控振盪器 (TSMC 0.25um) 71 4.2.1 架構簡介 71 4.2.2 設計流程 73 4.2.3 模擬與量測結果 75 4.2.4 結果與討論 80 4.3 具差動調變MOS Varactor之5GHz CMOS壓控振盪器(TSMC 0.18 um) 83 4.3.1 設計流程 83 4.3.2 模擬與量測結果 85 4.3.3 5GHz頻率合成器整體量測 88 4.3.4 結果與討論 93 4.4 總結 95 第五章 結論 97 參考文獻 99 附錄A 頻率合成器原理與Motorola MC12210之介紹 101 A.1 頻率合成器架構與鎖相迴路原理簡介 101 A.2 迴路濾波器分析與設計[23][24] 103 A.3 鎖相迴路之相位雜訊來源分析 106 A.3.1 相位雜訊來自輸入參考訊號 107 A.3.2 相位雜訊來自VCO 108 A.3.3 鎖相迴路對相位雜訊的影響[25] 109 A.4 Motorola MC12210之介紹 109 A.4.1 Motorola MC12210 IC之架構介紹 110 A.4.2 頻率合成器整體接線圖 112

    參考文獻

    [1] C. T. -C. Nguyen, “Micromechanical components for miniaturized low-power communications (invited plenary),” Proceedings 1999 IEEE MTT-S International Microwave Symposium RF MEMS Workshop, Anaheim, California, pp.48-77, June 18, 1999.
    [2] B. Razavi, RF Microelectronics, Prentice Hall, 1997.
    [3] G. M. Rebeiz and J. B. Muldavin, “RF MEMS switches and switch circuits, ” IEEE Microwave Magazine, pp.59-71, Dec. 2001.
    [4] Z. J. Yao, S. Chen, S. Eshelman, D. Denniston and C. Goldsmith, “Micromachined Low-Loss Microwave Switches,” IEEE Journal of Microelectromechanical System, Vol. 8, No. 2, pp129-134, June 1999.
    [5] J. B. Muldavin and G. M. Rebeiz, “All-metal high isolation series and series/shunt MEMS switch, ”IEEE. Microwave Wireless Compon. Lett., vol. 11 pp.373-375, Sep 2001.
    [6] G. -L. Tan and G. M. Rebeiz, “A DC-contact MEMS shunt switch, ”IEEE. Microwave Wireless Compon. Lett., vol. 12 pp. 212-214, Jun 2002.
    [7] D. Peroulis, S. Pacheco, K. Sarandi and L. Katehi, “MEMS devices for high isolation switching and tunable filtering,” IEEE MTT-S Digest 2000, pp.1217-1220.
    [8] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 1996.
    [9] D. Ham and A. Hajimiri, “Concept and Methods in Optimization of Integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896-909, June 2001.
    [10] R. L. Bunch and S. Raman, “Large-Signal Analysis of MOS Varactors in CMOS- LC VCOs” IEEE J. of Solid-State Circuits, vol.38, No. 8, pp. 1325-1332, Aug. 2003
    [11] P. Andreani and S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,” IEEE J. of Solid-State Circuits, vol.35, No. 6, pp. 905-910, June 2000.
    [12] A. Kral, F. Behbahani and A. A. Abidi, “RF-CMOS Oscillators with Switched Tuning,” in Proc. IEEE Custom Integrated Circuits Conf., Santa Clara, CA, 1998, pp. 555-558
    [13] E. Hegazi, H. Sjoland and A. A. Abidi, “A filtering technique to lower oscillator phase noise” IEEE J. of Solid-State Circuits, vol.36, No.12, pp.1921-1930, Dec. 2001.
    [14] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” in Proc. IEEE Custom Integrated Circuits Conf., Orlando, FL, 2000, pp. 569-572.
    [15] 于宗仁,應用在HDTV/ITV寬頻帶射頻調諧器及900-MHz/2.4-GHz無線通訊之頻率合成器的設計,國立成功大學電機工程研究所碩士論文,民國八十六年。
    [16] D. B. Leeson, “A Simple Model of Feeback Oscillator Noise Spectrum,” Proc. IEEE, Vol. 54, pp. 329-330, Feb. 1966.
    [17] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers a simple physical model,” IEEE Transaction of Solid-State Circuits, vol.35, No.1, pp.15-25, Jun. 2000.
    [18] A. Hajimiri and T.H. Lee,“Oscillator phase noise: a tutorial,” IEEE J. of Solid-State Circuits, vol.32, No. 3, pp. 326-336, March 2000.
    [19] 朱元凱,應用於802.11a WLAN之5GHz U-NII 頻帶降頻器 CMOS RFIC,國立成功大學電機工程研究所碩士論文,民國九十一年。
    [20] C. M. Hung, B. A. Floyd, N. Park, and Kenneth K.O, “Fully integrated 5.35-GHz CMOS VCOs and prescalers,” IEEE Trans. Microwave Theory Tech., vol. 49, No.1, pp. 17-22, Jan. 2000.
    [21] A. Hajimiri and T.H. Lee,”Design Issue in CMOS Differential LC Oscillators,” IEEE J. of Solid-State Circuits, vol.34, No. 5, pp. 717-724, May 1999.
    [22] N. H. W. Fong, J. -O. Plouchart, N. Zamdmer, D. Liu, L. F. Wagner, C. Plett and N. G. Tarr, ”A 1V 3.8-5.7GHz wide-band VCO with differentially tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology,” IEEE Trans. Microwave Theory Tech., vol.51, No.8, pp. 1952-1959, Aug. 2003.
    [23] 黃秋皇,應用於802.11b/g 無線區域網路之2.4GHz CMOS射頻接收機,國立成功大學電機工程研究所碩士論文,民國九十二年。
    [24] National Semiconductor application note, AN-1001, 2001.
    [25] W. F. Egan, Practical RF System Design, Wiley, 2003.
    [26] Motorola Semiconductor Technical Data, MECL PLL Components Serial PLL Frequency Synthesizer, 1997.

    下載圖示 校內:2005-09-07公開
    校外:2006-09-07公開
    QR CODE