| 研究生: |
陳豐振 Chen, Feng-Chen |
|---|---|
| 論文名稱: |
小樣本下多品質特性產品製程能力之研究 |
| 指導教授: |
林清河
Lin, Chin-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | t-分配 、多重製程能力分析圖 、製程能力指標 |
| 相關次數: | 點閱:73 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於全球市場環境競爭日益激烈,各項產品的生命週期越來越短,加上顧客對產品品質要求日趨高漲的情況下,廠商在生產過程中製程的良窳,將關係著產品能否在市場上取得競爭優勢的重要因素之一。
目前台灣大多數電子產業的營運模式是以「專業代工」為主,其生產方式從早期多量少樣的大量生產模式,轉變為替客戶量身定造的少量多樣生產模式,這些客製化產品的多樣性和功能性越多,其製程的複雜度也隨之增加。因此,傳統上用來衡量單一品質特性的製程能力指標,將無法滿足多項品質特性的產品。所以在衡量產品整體製程良窳時,必須同時將多項品質特性納入考量。
一般而言,大多數廠商在檢驗產品品質良窳時,因成本、時間或檢驗方式(具破壞性)等因素的考量,無法對各項品質特性做全面性普查,通常只能抽取少量的樣本資料來做評估。為了避免受到抽樣誤差的干擾,能更準確地估算產品製程現況,因此本研究提出適用於小樣本下的製程能力指標。同時針對具有單邊規格(望大型和望小型)與雙邊規格(望目型)的多項品質特性產品,提出一個適用於小樣本下的整體製程能力指標,並應用 Huang et al.(2002)所提出的多重製程能力分析圖( Multi-Process Capability Analysis Chart,MPCAC),來評估產品每項品質特性的製程能力是否有達到預訂標準,以作為現場工程人員改善的方向或是採購人員評估產品品質的依據。
none
一、英文部分
1. Balamurali, S. , (2003), “Bootstrap Confidence Limits for Short-Run Capability Indices”, Quality Engineering, 15(4), pp.643-648.
2. Boyles, R. A. , (1991), “The Taguchi Capability Index”, Journal of Quality Technology, 23(1), pp.17-26.
3. Boyles, R. A. , (1994), “Process Capability with Asymmetric Tolerance,”
Communications in Statistics: Computation & Simulation, 23(3), pp.615-643.
4. Chan, L. K., Cheng, S. W. & Spiring, F. A. , (1988), “A new measure of process capability: Cpm.”, Journal of Quality Technology, 20(3), pp.162-175.
5. Charbonneau, H..C. and Webster, G. L., (1978), Industrial Quality Control,
Prentice Hall, Engle wood Cliffs, New Jwesey.
6. Chen, H. ,(1994) , “A Multivariate Process Capability Index over a Rectangular Solid Tolerance Zone”, Statistica Sinica, 4, pp.749-758.
7. Chen, K. S. , Huang, M. L. and Li, R. K., (2001) , “Process Capability Analysis for an Entire Production”, International Journal of Production Research, 39(17), pp.4077-4087.
8. Chou, Y. M. & Owen, D. B. , (1989), “On the Distribution of the Estimated
Process Cpability Indices”,Communicaton in statistic --- Theory and Method,
18(12), pp.4549-4560.
9. Chou, Y. M., Owen, D. B & Borrego A,S.A., (1990), “Lower Confidence Limits on Process Capability Indices”, Journal of Quality Technology, 22(3), pp.223-229.
10. Clements, J. A. , (1989), “ Process Capability Calculations for Non-normal Distributions”, Quality Process, September, pp.95-100.
11. Davis, R. D., Kaminsky, F. C. and Saboo, S. , (1992), “Process Capability Analysis for Processes With Either a Circular or a Spherical Tolerance Zone”, Quality Engineering, 5(1), pp.41-54.
12. English,J.R., and Taylor,G.D., (1993), “Process Capability Analysis A Robustness Study”, International Journal of Production and Rsearch, 31(7), pp.1621- 1635.
13. Huang, M. L., Chen, K.S., Hung, Y.H., (2002), “Integrated Process Capability Analysis with an Application in Backlight Module”, Microelectronics Reliability,42 ,pp.2009-2014.
14. Juran, J. M. (1974) , Jurans Quality Control Handbook. 3rd Edition,
McGraw Hill, New York.
15. Kane, V. E. , (1986), “Process capability indices”, Journal of Quality Technology, 18(1), pp.41-52.
16. Montgomery, D.C., (2001), Introduction to Statistical Quality Control. Wiley,
New York.
17. Peran, W. L. and Chen, K. S., (1995), “ Estimating Process Capability Indices for Non-normal Pearsonian Populations ”, Quality & Reliability Engineering International, 11(5), pp.386-388.
18. Pearn, W. L. and Chen, K. S., (1997), “An Application of Non-normal Process Capability Indices ”, Quality & Reliability Engineering International, 13, pp.355-360.
19. Pearn, W.L. Lin, G.H. Chen, K.S., (1998), ”Distributional and Inferential
Properties of the Process Accuracy and Process Precision Indices”, Commun Stat-Theory Meth , 27(4), pp.985–1000.
20. Pearn, W. L., Kotz, S. & Johnson, N. L., (1992), “Distributional and Inferential Properties of Process Capability Indices”, Journal of Quality Technology, 24(4), pp.216-231.
21. Pearn, W. L. , Kotz, S., and Johnson, N. L., (1994), “Application of Clements Method for Calculating Second and Third Generation Process Capability Indices for Non-normal Pearsonian Populations”, Quality Engineer, 7(1), pp.139-145.
22. Shahriari, H. Hubele, N. F. and Lawrence, F. P., (1995), “A Multivariate Process Capability Vector”, Proceedings of the 4th Industrial Engineering Research Conference, Nashville, TN, pp.303-308.
23. Singhal, S. C., (1991), Multiprocess Performance Analysis Chart (MPPAC) with Capability Zones. Quality Engineering, 4(1), pp.75-81.
24. Taam, W. Subbaiah, P. and Liddy, J. W., (1993), “A Note on Multivariate Capability Indices”, Journal of Applied Statistics , 20, pp.339-351.
25. Vännman, K., (1995), “ A Unified Approach to Capability Index”, Statistics Sinica, 5, pp.805-820.
26. Wright, P. A. , (1998), “The Probability Density Function of Process Capability
Index Cpmk”, Communicaton in statistic - Theory and Method, 27(7), pp.1781-
1789.
27. Yeh, A. B. and Chen, H., (2001), “A Nonparametric Multivariate Process Capability Index”, International Journal of Modelling and Simulation, 21(3), pp.218-223.
二、中文部分
1. 陳坤盛、洪永祥、黃美玲(2000),「整個產品的製程能力分析」,品質學報,第7卷第1期,頁115-128。
2. 陳連春譯,那野比古著(2000),「什麼是液晶」,建興出版社,頁10-19。
3. 戴久永(1998),「現代統計學的發展」,數學傳播第三卷第三期。網址:http://episte.math.ntu.edu.tw/articles/mm/mm_03_3_09/index.html。
4. 奇美電子股份有限公司,網址:http://www.cmo.com.tw/。