| 研究生: |
劉倫良 Liou, Lun-Liang |
|---|---|
| 論文名稱: |
工業用戶參與需量競價之負載排程與策略規劃 - 以煉鋼廠為例 Industrial Load Scheduling and Bidding Strategy for Demand Response - Case Study for a Steel Mill |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 需量反應 、需量競價 、抑低負載量預測 、混合整數線性規劃模型 、投標策略 |
| 外文關鍵詞: | Demand Response, Demand Bidding, Load Forecasting, MILP, Bidding Strategy |
| 相關次數: | 點閱:165 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
需量反應為目前電力系統需求面管理最受重視議題之一,可透過改變用戶的負載行為提供電力系統供需平衡所需之輔助服務,以及抑低尖峰負載改善負載因數等。根據台灣經濟部能源局統計,2018年工業用戶的用電量占總用電的54.5%,為台灣用電量最大的行業別。鑒於其提供抑低量的潛能,工業用戶成為需量反應的重點實施對象。
本文提出工業用戶參與需量競價措施之中短期電能管理與投標策略,從而獲得需量競價的最大利益。透過倒傳遞類神經網路預測後一個月的負載,以評估未來一個月的工廠排修計畫,以最大化需量競價的抑低潛能。此外,利用歷史得標紀錄與相應的備轉容量率、邊際機組的燃料價格與更新的投標狀態來建構價格適應性機制。依據前述的月前排修計畫與價格分析結果,在考慮機會成本、需量競價執行次數限制與工廠製程規則的情況下,本文利用混合整數線性規劃演算法進行完整的需量競價策略與具有5天動態窗格的每日負載排程。
最後,本文採用台灣鋼鐵廠的實際數據做模擬驗證,分析結果顯示,本文所提出的方法兼顧需量競價的獲利與整體的經濟效益,進而為消費者節省龐大的電費支出。模擬結果中也展現出使用價格適應性機制的效果與考量機會成本的重要性。
Demand Response (DR), as one of the popular issues in today’s power system, focuses on changing electricity user behavior to provide ancillary services for load balance and peak shaving for load factor improvement. Meanwhile, according to the Bureau of Energy in Taiwan, the electricity consumption of industrial customers accounts for 54.5% of the electricity demand in 2018. As the potential it can provide, the industrial customer is one of the best candidates to be encouraged to participate in the DR program.
This thesis proposes a mid and short term energy management and bidding strategy for industrial customers to join in the demand bidding program, and thus gain maximum DR profit. We employ the Back Propagation Neural Network (BPNN) to have the monthly-ahead load forecasting. Afterwards, we arrange the month-ahead maintenance planning based on the load forecasting result to maximize the DR load reduction. The historical bidding experiences, corresponding reserve rates, fuel price of marginal unit, and updated bidding status are used to construct a price adaptive mechanism. On the basis of the price analysis and monthly plan, via mixed integer linear programming (MILP) algorithm, the bidding strategy and scheduling are determined from the daily optimization within the 5-days moving window in consideration of the opportunity cost, DR execution days, and manufacturing process.
The realistic data from a steel company in Taiwan is employed in our case studies. The results illustrate that the economic efficiency of the proposed method by obtaining the DR profit and, therefore, saving the considerable electricity cost for the consumer. The improvement achieved by the proposed price adaptive mechanism and the importance of opportunity cost consideration are demonstrated in the simulation as well.
[1] Taipower Company, Demand-Side Management Measures. [Online]. Available: http://taipowerdsm-clinic.taipower.com.tw, Accessed on: Aug. 2018.
[2] M. H. Hsu, “The Demand Response, Load Management and Demand Bidding,” Industrial Technology Research Institute, Oct. 25, 2017.
[3] P. R. Babu and A. Kumar, “Application of Novel DSM Techniques for Industrial Peak Load Management,” IEEE Int. Conf. Pwr. Enrg. Ctrl., Sri Rangalatchum Dindigul, India, Feb. 2013.
[4] Taipower Company, Electricity Consumption Statistics. [Online]. Available: https://data.gov.tw/dataset/31966, Accessed on: Mar. 2019.
[5] J. Han and M.A. Piette, “Solutions for Summer Electric Power Shortages: Demand Response and Its Applications in Air Conditioning and Refrigeration Systems,” Refrigeration A.C. Elec. Pwr. Mach., vol. 29, no. 1, pp. 1-4, Jan. 2008.
[6] S. Mohagheghi, J. Stoupis, Z. Wang, Z. Li, and H. Kazemzadeh, “Demand Response Architecture: Integration into the Distribution Management System,” IEEE Int. Conf. S. G. Comm., Oct. 2010, pp. 501-506.
[7] J. G. Roos and I. E. Lane, “Industrial Power Demand Response Analysis for One-Part Real-Time Pricing,” IEEE Trans. Pwr. Syst., vol. 13, no.1, Feb. 1998.
[8] Energy Bureau, Electricity Consumption of the Past Years. [Online]. Available: https://www.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142, Access on: May 2019.
[9] X. Huang, S. H. Hong, and Y. Li, “Hour-Ahead Price Based Energy Management Scheme for Industrial Facilities,” IEEE Trans. Ind. Informat., vol. 13, no. 6, pp.2886-2898, Dec. 2017.
[10] P. M. Castro, I. Harjunkoski, and I. E. Grossmann, “Optimal Scheduling of Continuous Plants with Energy Constraints,” Comput. Chem. Eng., vol. 35, pp. 372–387, May 2010.
[11] X. Zhang, G. Hug, J. Z. Kolter, and I. Harjunkoski, “Demand Response of Ancillary Service from Industrial Loads Coordinated with Energy Storage,” IEEE Trans. Pwr Syst., vol. 33, no. 1, pp. 951-961, Jan. 2018.
[12] H. S. Yan and X. D. Zhang, “A Case Study on Integrated Production Planning and Scheduling in A Three-Stage Manufacturing System,” IEEE Trans. Autom. Sci. Eng., vol. 4, no. 1, pp. 86-92, Jan. 2007.
[13] S. Mitra and I. E. Grossmann, “Optimal Production Planning under Time-Sensitive Electricity Prices for Continuous Power-Intensive Processes,” Comput. Chem. Eng., vol. 38, pp.171-184, Oct. 2011.
[14] S. Mohagheghi and N. Raji, “Intelligent Demand Response Scheme for Energy Management of Industrial Systems,” IEEE Ind. Appl. Socie. Ann. Mtg., pp. 1-9, Dec. 2012.
[15] P. Pulkkinen and R. Ritala, “TMP Production Scheduling under Uncertainty: Methodology and Case Studies,” Chem. Eng. Proc., vol. 47, pp. 1492–1503, July 2007.
[16] Y. M. Ding, S. H. Hong, and X. H. Li, “A Demand Response Energy Management Scheme for Industrial Facilities in Smart Grid,” IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2257-2269, Nov. 2014.
[17] Z. Sun, L. Li, “Potential Capability Estimation for Real Time Electricity Demand Response of Sustainable Manufacturing Systems Using Markov Decision Process,” Jour. Clnr. Prod., pp. 184-193, Sep. 2013.
[18] Y. C. Li and S. H. Hong, “Real-Time Demand Bidding for Energy Management in Discrete Manufacturing Facilities,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 739-749, Jan. 2017.
[19] M.R. Hamed, “Optimal Demand Bidding for Time-Shiftable Loads,” IEEE Trans. Pwr. Syst., vol. 30, no. 2, pp.939-951, Mar. 2015.
[20] W. Pei et al, “Optimal Bidding Strategy and Intramarket Mechanism of Microgrid Aggregator in Real-Time Balancing Market,” IEEE Trans. Ind. Inf., vol. 12, no. 2, pp. 587-596, Apr. 2016.
[21] A. G. Vlachos and P. N. Biskas, “Demand Response in A Real-Time Balancing Market Clearing with Pay-As-Bid Pricing,” IEEE Trans. Smart Grid, vol. 4, no. 4, Dec. 2013.
[22] L. T. Yao and W. H. Lim, “Optimal Purchase Strategy for Demand Bidding,” IEEE Trans. Pwr. Syst., vol. 33, no. 3, May 2018.
[23] K. Pam, W. Shi, X. Wang, and J. Li, “A Short-Term Marginal Price Forecasting Model Based on Ensemble Learning,” Int. Conf. Progr. Inform. Comput., Nanjing, China, pp. 81-85, Dec. 2017.
[24] Z. L. Lin, Z. F. Jia, H. I. Wang, Y. J. Yue, and E. Z. Dong, “Forecast of System Marginal Price by A Neural Network with Critic Mechanism,” IEEE Wld. Congr. Intel. Ctrl. Autom., Jinan, China, pp. 2361-2365, July 2010.
[25] Y. Ji, J. Kim, R. J. Thomas, and L. Tong, “Forecasting Real-Time Locational Marginal Price A State Space Approach,” IEEE Asilomar Conf. Sign., Syst. Comput., Pacific Grove, CA, USA, pp. 379-383, Nov. 2013
[26] F. Sarafraz, H. Ghasemi, and H. Monsef, “Locational Marginal Price Forecasting by Locally Linear Neuro-Fuzzy Model,” IEEE Int. Conf. Env. Elec. Eng., Rome, Italy, pp. 1-4, May 2011.
[27] L. R. Peterson and P. Ranganathan, “Short-Term Forecast for Locational Marginal Pricing (LMP) Data Sets,” IEEE Nor. American Pwr. Symp., Fargo, ND, USA, pp. 1-5, Sept. 2018
[28] M. Tandon, P. T. Cummings, and M. D. L. Van, “Scheduling of Multiple Products on Parallel Units with Tardiness Penalties Using Simulated Annealing,” Comput. Chem. Eng., vol. 19, iss. 10, pp. 1069-1076, Oct. 1995.
[29] Y. M. Ding, S. H. Hong, and X. H. Li, “A Demand Response Energy Management Scheme for Industrial Facilities in Smart Grid,” IEEE Trans. Ind., vol. 10, no. 4, Nov. 2014.
[30] D. Rumelhart, G. Hinton, and R. Williams, “Learning Representations by Back-Propagating Errors,” Nature, vol. 323, pp. 533-536, 1986.
[31] C. George and R. L. Berger, “Statistical Inference,” 2nd ed., Pacific Grove, CA, USA: Wadsworth, 2002, pp. 101-106.
[32] D. H. Cui and X. Y. Zhang, “Application of Game Theory on Bidding Price Decision,” IEEE Int. Conf. Ind. Eng. Eng. Mgmt., Beijing, China, Dec 2009.
[33] National Taxation Bureau of the Southern Area, “Raw Materials and Energy Consumption of Steel Industry,” May 7, 2019. [Online]. Available: https://www.ntbsa.gov.tw/etwmain/web/ETW118W/CON/2399/6940173133506737857
[34] Y. C. Chen, “Hot-Roll/Cold-Roll Order Allocation of Logistics and Strategy Planning in China Steel Group,” CSC Tech. Trng., vol. 32, no. 2, pp. 1-7, Jun. 2018.
[35] K. P. Huang, “The Activities of Integrated Production Planning,” CSC Tech. Trng., vol. 39, no. 2, pp. 1-9, Jun. 2014.
[36] Taipower Company, Taipower Company Rate Schedules. [Online]. Available: https://www.taipower.com.tw/en/page.aspx?mid=317
校內:2024-07-30公開