| 研究生: |
許鈞程 Hsu, Chun-Chen |
|---|---|
| 論文名稱: |
CMOS類比電路實體層設計自動化 CMOS Analog Circuit Layout Design Automation |
| 指導教授: |
賴源泰
Lai, Yen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 元件匹配 、對稱 、類比電路實體層 、雜訊耦合 |
| 外文關鍵詞: | Symmetry, Matching, Analog Circuit layout, Noise Coupling |
| 相關次數: | 點閱:103 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在類比CMOS IC設計流程中,實體層的設計佔有重要的地位。良好的實體層設計必須具有對數位雜訊及製成波動低敏感的特性,所以類比的實體層設計一直都還是相當耗時以及用手畫的工作。由於超大型積體電路(VLSI)複雜度的增加以及單晶片(SOC)的發展使得必須要有電腦輔助設計(CAD)來加速整個設計過程,對類比電路實體層設計而言,更需要有電腦輔助設計來改善它。
在本論文中,我們提出一個工具去自動化類比的實體層設計並同時加入類比電路的基本考量(元件的匹配、對稱及訊號線間的雜訊偶合效應),此工具涵蓋的範圍包括從元件的產生到其區塊間的佈局及繞線。首先我們提供模組產生器將分割好的電路敘述檔根據元件匹配的考量轉換成其相對應的實體層,然後佈局工具依據對稱、導線長度及晶片面積的限制將所有的模組擺放至適當的位置。我們基本的繞線理論是使用找尋不跨過障礙物的最短路徑演算法,然後我們提出一個方法來避免吵雜的訊號線把雜訊偶合到抗雜訊低的訊號線。根據實驗結果,我們提出的工具可以在合理的時間內根據使用者訂定的限制來產生適合的類比電路實體層,因而使得整個類比電路實體層的設計更加有效率。
Layout design is a very important step in the analog CMOS IC design flow. Good layout quality should feature low susceptibility to digital noise and low sensitivity to process variation. It has historically been a time-consuming, manual task. The fast growth of complexity of VLSI systems and recent advances in System-On-Chip (SOC) developments, make it necessary to have powerful Computer-Aided-Design (CAD) tools to speed up the design process. This issue is especially important for analog circuit layout design.
In this thesis, we present a tool to automate analog layout design with analog basic considerations (matching, symmetry, and noise coupling). It covers from device level module generation to block level placement and routing. Fist, we provide a module generator to transfer partitioned netlists to physical layout with matching consideration. Placement tool then places all cells with symmetric, wire length, and area constraints. Obstacle-avoiding shortest finding algorithm is used for our basic routing algorithm and we propose an approach to avoiding noise coupling between noisy and sensitive nets. According to experimental results, our tool can handle analog circuit layout with user specified constraints in the reasonable time and make analog layout design more efficient.
[1] R. Rutenbar, J. Cohn, “Layout tools for analog ICs and mixed-signal SoCs: a survey”, Proc. Intn’l Symp. On Physical Design, pp. 76-83, April 2000.
[2] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley, “KOAN/ANAGRAM II: New tools for device-level analog placement and routing”, IEEE J. Solid-State Circuits, vol. 26, pp. 330-342, Mar. 1991.
[3] E. Malavasi, E. Charbon, E. felt, and A. Sangiovanni-Vincentell“, Automation of IC layout with analog constraints,” IEEE Trans. Computer-Aided Design, vol. 15, no. 8, pp. 923-942, August 1996.
[4] X. Zeng, J. Guan, W. Q. Zhao, P. S. Tang and D. Zhou, “A constraint-based placement refinement method for CMOS analog cell layout”, IEEE ISCAS, pp. VI-408, June, 1999.
[5] U. Gatti, F. Maloberti, and V. Literali, “Full stacked layout of analog cells”, in Proc. ISCAS, pp. 1123-1126, 1989.
[6] E. Malavasi and D. Pandini, “Optimum CMOS stack generation with analog constraints”, IEEE Trans. Computer-Aided Design, Vol. 14, No. 1, pp. 107-122, Jan. 1995.
[7] A. Basaran and R. A. Rutenbar, “An O(n) algorithm for transistor stacking with performance constraints”, in Proc. Of IEEE/ACM DAC, pp. 221-226, June 1996.
[8] J. D. Bruce, H. W. Li, M. J. Dallabetta and R. J. Baker, “Analog Layout Using ALAS”, IEEE Journal of Solid-State Circuits, vol. 31, no.2, Feb. 1996.
[9] R. Naiknaware and T. S. Fiez, “Automated hierarchical CMOS analog circuit stack generation with intramodule connectivity and matching considerations”, IEEE Journal of Solid-State Circuits, vol. 34, no. 3, March 1999.
[10] X. Zeng, M. Li, W. Zhao, P. Tang, and D. Zhou, “Parasitic and mismatch modeling for optimal stack generation”, ISCAS 2000, pp. 193-196, May 2000.
[11] J.M. Cohn, D. J. Garrod, R. A. Rutenbar, L. R. Carley, Analog Device-Level Layout Automation, Kluwer Acad. Pub1., 1994.
[12] R. A. Hastings, The Art of Analog Layout, Prentice Hall, 1st edition, December 15, 2000.
[13] F. Balasa, K. Lampaert, “Module placement for analog layout using the sequence-pair representation”, ACM Des. Aut. Conf. 99, pp. 274-279, 1999.
[14] R. Otten, “Complexity and diversity in IC layout design”, Proc. IEEE Intn’l Symp. Circuits and Computers, 1980.
[15] D. F. Wong, C. L. Liu, “A new algorithm for floorplan design”, Proc. 23rd ACM/IEEE Design Automation Conf., pp. 101-107, 1986.
[16] F. Balasa, “Device-level placement for analog layout: an opportunity for non-slicing topological representations ”, IEEE Design Automation Conf., pp. 281 -286, 2001,
[17] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module placement based on rectangle-packing by the sequence-pair”, IEEE Trans. CAD, Vol. 15, No. 12, pp. 1518-1524, Dec. 1996.
[18] P. N. Guo, C. K. Cheng, and T. Yoshimura, “An O-Tree representation of non-slicing floorplan and its applications”, Proc. IEEE Design Automation Conf., pp. 268-273, 1999.
[19] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B*-Tree: a new representation for non-slicing floorplans”, Proc. 37th ACM/IEEE Design Automation Conf., pp. 458-463, 2000.
[20] F. Balasa, S. C. Maruvada, and K. Krishnamoorthy, “Efficient solution space exploration based on segment trees in analog placement with symmetry constraints”, Proc. IEEE Design Automation Conf., pp. 497-502, 2002.
[21] F. Balasa, C. S. Maruvada, “Using non-slicing topological representations for analog placement”, IEICE Trans. On Fundamentals of Electr., Comm. & Comp. Sc., Vol. E84-A, No. 11, pp. 2785-2791. Nov. 2001
[22] F. P. Preparata, M. I. Shamos, Computational Geometry, Springer-Verlag, 1985.
[23] Douglas B. West, Introduction to Graph Theory, Prentice Hall, 2nd edition, 2001.
[24] S. Q. Zheng, J. S. Lim, and S. S. Iyengar, “Finding Obstacle-Avoiding Shortest Paths Using Implicit Connection Graphs”, IEEE TCAD, vol. CAD-15, no. 1, pp. 103-110, Jan. 1996.