簡易檢索 / 詳目顯示

研究生: 張書豪
Chang, Shu-Hao
論文名稱: 應用開迴路諧振器於多通道微帶線在串音抑制效果之探討
The Effect of Open-Looped Resonators on Suppression of Cross-Talk of Multi-Channel Microstrip Lines
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 95
中文關鍵詞: 多通道傳輸線信號完整性串音干擾開迴路諧振器
外文關鍵詞: multiple signal-transmission-lines, signal integrity, cross-talk, open-looped resonators
相關次數: 點閱:133下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今,為了因應效能的提升,信號會需要透過多通道同時傳輸,而相鄰的信號線容易因電場與磁場的相互耦合,產生串音干擾的雜訊,且產品尺寸的縮小,使得干擾更加嚴重,此種干擾為影響信號完整性的主要因素,會使得系統的整體性能下降。過往大多使用3W法則與接地防護線來減少串音干擾,但隨著頻率的上升,抑制的效果逐漸下降,因此有學者提出加入開迴路諧振器在信號線間,其可不須貫穿孔結構且在特定頻率時有好的串音抑制效果,但僅對諧振器的長度對抑制效果的影響做探討。於是,本論文對開迴路諧振器進行更多結構改變的探討,改變了諧振器放置密度、諧振器間間距、諧振器與信號線間間距、諧振器開口、諧振器線寬和開口位置,利用HFSS模擬分析,結果顯示信號線間佈滿開迴路諧振器有較好的抑制效果,而當諧振器間間距、諧振器與信號線間間距、諧振器開口和諧振器線寬較小時,皆可增加抑制的效果,但是相對的抑制頻寬減少。並將其應用在四條信號線間,發現在多條信號線間,僅相鄰的信號線間能達到串音的抑制,若相隔兩條以上的線路則無抑制效果。本研究同時在1.6mm板厚的Fr4板上面進行開迴路諧振器的實作,量測確認實作與模擬結果一致。根據本研究的結果,諧振器的開口大小、線寬、諧振器間間距和諧振器與信號線間的間距皆會影響遠端串音的抑制效果,開口位置則無影響,進而提出開迴路諧振器的設計準則,讓應用開迴路諧振器在串音抑制上的設計更加方便。

    Cross-talk is an important issue for the signal integrity of high frequency, high speed and multiple signal-transmission-lines in modern electronic products. Usually, 3W rule and guard trace between neighboring signal-lines are applied to reduce or suppress the effect of cross-talk. Both methods suffer a drawback that the effect of cross-talk increases with frequency. To alleviate the problem, open-looped resonators were introduced between signal lines recently and analysis showed that cross-talk could be greatly suppressed in low-frequency range and increased in high-frequency range. In this study, the effect and suppressing mechanism of open-looped resonators were investigated deeply by analyzing the cross-talk with varied design parameters, such as length of the resonators, size and position of the open gap, separation distance between two neighboring resonators or between the resonator and signal line, and number of resonators. Numerical results showed that open-looped resonators only affected the cross-talk between adjacent signal lines and had no influence on that of lines among which there was one or more other lines. The resonant frequency which separated the frequency range into the low-frequency section and high-frequency section was primarily determined by the length of the resonator. The size of resonator and separation distance could alter the available bandwidth of low-frequency section of suppression. Finally, real signal lines embedded with open-looped resonators were implemented to confirm the numerical results and a design rule of the resonators was proposed for practical applications.

    摘要 I 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 第二章 理論背景與研究現況 3 2-1 微帶線 3 2-1-1 微帶線簡介 3 2-1-2 微帶線傳輸組態 4 2-1-3 微帶線各項參數公式計算 5 2-1-4 微帶線厚度與寬度探討 7 2-1-5 微帶線電路板的製作 10 2-2 串音現象 14 2-2-1 串音等效模型 14 2-2-2 電容性耦合 16 2-2-3 電感性耦合 19 2-2-4 共同分析 20 2-3 抑制串音的方法 21 2-3-1 3W法則 21 2-3-2 接地防護線 22 2-3-3 開迴路諧振器 23 第三章 模擬分析軟體與方法 26 3-1 HFSS電磁模擬軟體 26 3-2 串音干擾數值定義 28 第四章 模擬規劃與方法 30 4-1 雙耦合線結構定義 30 4-2 接地防護線結構對訊號傳輸的影響 31 4-2-1 貫穿孔間間距S對傳輸特性分析 32 4-2-2 貫穿孔直徑與防護線寬比D/W對傳輸特性分析 33 4-3 單一諧振器結構對訊號傳輸的影響分析 34 4-3-1 諧振器開口必要性與對傳輸特性之分析 35 4-3-2 諧振器開口Sf對傳輸特性分析 37 4-3-3 諧振器放置密度對傳輸特性分析 38 4-3-4 串音抑制方法比較 39 4-4 多重開迴路諧振器對訊號傳輸的影響分析 41 4-4-1 諧振器長度Lf對傳輸特性分析 43 4-4-2 諧振器間間距S1對傳輸特性分析 44 4-4-3 諧振器與訊號線間間距S2對傳輸特性分析 44 4-4-4 諧振器開口Sf對傳輸特性分析 45 4-4-5 諧振器線寬Wf對傳輸特性分析 46 4-4-6 諧振器開口位置與開口必要性探討 47 4-5 線路實作驗證 49 4-5-1 信號線間加入開迴路諧振器結果之驗證 50 4-5-2 開迴路諧振器結構參數改變之特性驗證 52 4-6 四條訊號線路模擬 53 第五章 結果與討論 56 5-1 接地防護線結構對訊號傳輸的影響 56 5-1-1 貫穿孔間間距S對傳輸特性分析 56 5-1-2 貫穿孔直徑與防護線寬比D/W對傳輸特性分析 59 5-1-3 總結 62 5-2 諧振器對訊號傳輸的影響 62 5-2-1 諧振器開口必要性與對傳輸特性之分析 62 5-2-2 諧振器開口大小對傳輸特性分析 67 5-2-3 諧振器放置密度對傳輸特性分析 68 5-2-4 串音抑制方法比較 69 5-2-5 總結 71 5-3 多重開迴路諧振器結構對訊號傳輸的影響 72 5-3-1 諧振器長度Lf對傳輸特性分析 72 5-3-2 諧振器間間距S1對傳輸特性分析 73 5-3-3 諧振器與訊號線間間距S2對傳輸特性分析 74 5-3-4 諧振器開口Sf對傳輸特性分析 75 5-3-5 諧振器線寬Wf對傳輸特性分析 76 5-3-6 諧振器開口位置與開口必要性探討 77 5-3-7 總結 81 5-4 線路實作與模擬驗證 82 5-4-1 是否加入多重開迴路諧振器結果之驗證 84 5-4-2 開迴路諧振器結構參數改變之特性驗證 85 5-4-3 總結 87 5-5 四條線訊號線路模擬 87 第六章 結論與未來方向 92 參考文獻 94

    [1] C. R. Paul, Introduction to electromagnetic compatibility vol. 184: John Wiley & Sons, 2006.
    [2] V. Shukla, Signal integrity for PCB designers: Reference Designer, 2009.
    [3] T. Tobana, T. Sasamori, and Y. Isota, "Study of crosstalk between microstrip lines through a ground slot of PCB," in Antennas and Propagation (ISAP), 2016 International Symposium on, 2016, pp. 266-267.
    [4] G. Ouyang, T. P. Lu-vong, and K. Xiao, "Methods to reduce crosstalk in flex circuit and PCB," in Electromagnetic Compatibility (EMC), 2016 IEEE International Symposium on, 2016, pp. 25-28.
    [5] D. A. Hill, K. H. Cavcey, and R. T. Johnk, "Crosstalk between microstrip transmission lines," IEEE Transactions on electromagnetic compatibility, vol. 36, pp. 314-321, 1994.
    [6] D. B. Jarvis, "The effects of interconnections on high-speed logic circuits," IEEE Transactions on Electronic Computers, pp. 476-487, 1963.
    [7] M. I. Montrose, Printed circuit board design techniques for EMC compliance vol. 1: IEEE press Piscataway, NJ, 1996.
    [8] A. Suntives, A. Khajooeizadeh, and R. Abhari, "Using via fences for crosstalk reduction in PCB circuits," in Electromagnetic Compatibility, 2006. EMC 2006. 2006 IEEE International Symposium on, 2006, pp. 34-37.
    [9] M. Takbiri, N. Masoumi, M. Mehri, and Z. D. Koozehkanani, "Crosstalk reduction using open-loop resonators for printed circuit boards traces," in Microwave Symposium (MMS), 2013 13th Mediterranean, 2013, pp. 1-4.
    [10] D. M. Pozar, Microwave engineering: John Wiley & Sons, 2009.
    [11] T. C. Edwards and M. B. Steer, Foundations for microstrip circuit design: John Wiley & Sons, 2016.
    [12] I. Bahl and R. Garg, "Simple and accurate formulas for a microstrip with finite strip thickness," Proceedings of the IEEE, vol. 65, pp. 1611-1612, 1977.
    [13] 林水春, 印刷電路板設計與製作: 全華科技圖書股份有限公司, 1983.
    [14] L. Shufang and S. Fuxun, "Simulation for crosstalk in coupled microstrip transmission lines," in Environmental Electromagnetics, 2003. CEEM 2003. Proceedings. Asia-Pacific Conference on, 2003, pp. 455-460.
    [15] 林明星, "電磁相容理論與實務," 2007.
    [16] F. D. Mbairi, W. P. Siebert, and H. Hesselbom, "High-frequency transmission lines crosstalk reduction using spacing rules," IEEE transactions on components and packaging technologies, vol. 31, pp. 601-610, 2008.
    [17] L. Zhi, W. Qiang, and S. Changsheng, "Application of guard traces with vias in the RF PCB layout," in Electromagnetic Compatibility, 2002 3rd International Symposium on, 2002, pp. 771-774.
    [18] J.-S. Hong and M. J. Lancaster, "Theory and experiment of novel microstrip slow-wave open-loop resonator filters," IEEE Transactions on Microwave theory and Techniques, vol. 45, pp. 2358-2365, 1997.
    [19] H. Ansoft, "user’s Guide—High Frequency Structure Simulator," Ansoft Co, 2003.

    下載圖示 校內:2019-08-15公開
    校外:2019-08-15公開
    QR CODE