| 研究生: |
王俊凱 Wang, Jyun-kai |
|---|---|
| 論文名稱: |
由繞射結構構成之新型液晶顯示面板 Novel LCD Panel Construct by Diffractive Structures |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 193 |
| 中文關鍵詞: | 液晶顯示面板 、錨定能 、彩色濾光 、極化分光 、零階繞射金屬光柵 |
| 外文關鍵詞: | LCD panel, anchoring strength, color filter, polarizing beam splitter, zero-order diffractive metal grating |
| 相關次數: | 點閱:124 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文提出一種新型的液晶顯示面板架構,其利用附著於玻璃基板上之光柵狀繞射結構來產生四種功用:偏光、配向液晶、透明電極、彩色濾光,將可用其來取代傳統液晶顯示面板中的偏光膜、配向膜、ITO透明電極以及彩色濾光片,可望大幅簡化傳統LCD之結構。此單一結構可以用奈米製造技術如半導體製程生成於顯示面板之玻璃基板內側,並可望與面板之電路製程做整合,減少LCD面板製造所需的工序。除了結構與製程上的優點,本論文所提出的新型液晶顯架構由於採用非吸收式的偏光與彩色濾波方法,因此可以藉由搭配偏光轉換架構來提升光能利用效率,另一方面新型面板的繞射結構相較於傳統Polaroid偏光膜具有耐高溫、抗熱老化的特性。
本論文主要著墨於此新型架構產生四種功用的基本原理、以及利用實驗與模擬來加以證實之。本論文在實驗上採用美國Moxtek公司之Wire-grid極化分光器製作出一新型面板,並利用其進行驅動與光學的量測,初步驗證了本論文結構之可用性。本論文中也提出了Polaroid偏光膜熱老化的模型,並藉由實驗觀察Polaroid偏光膜與Wire-grid極化分光器的熱老化,結果顯示Wire-grid極化分光器具有優異的抗熱老化能力。在模擬方面,本論文利用三種不同的數值方法(FEM、FDTD、RCWA)進行光學模擬,並與實驗進行對照比較,除此之外也將數值模擬視為是設計與改良繞射結構的重要工具。在光柵的光學設計上,本論文倚重RCWA數值模擬方法來找出合適的光柵材料與結構,使其能滿足所需之偏光與濾光效果。對於液晶的溝槽方位角錨定現象則採用Berreman’s model並利用FEM來求得等效的正規化方位角錨定能,並由U型槽的一系列模擬結果提出了專用的正規化方位角錨定能表示式,可以快速由U型槽之幾何參數與液晶材料參數計算等效方位角錨定能。
除了提出利用線柵極化分光器製作新型液晶顯示面板,本論文也提出更進階的結構與想法,並設計出具有RGB顯色功能的面板結構。
關鍵字:零階繞射金屬光柵、極化分光、彩色濾光、錨定能、液晶顯示面板
Abstract
From this paper, a novel LCD panel structure has been introduced. The main idea of the novel panel is using diffractive structures (effective medium) as the building blocks to accomplish four important functions of conventional LCD panel units, the four functions are EM wave polarizing, LC anchoring, transparent electrode, and color fitting. The multifunctional diffractive structures laying on the glass substrates can take place of polarizers, ITO electrodes, alignment layers, and color filters used in conventional LCD panel. The diffractive structure can be produced by lithography and etching process, and have the potential to simplify the structures and associated manufacturing cost of the LCD panel.
We made a novel TN NW LCD panel by wire-grid PBS (Moxtek PPL03A) and test the driving ability and optical properties of it. From experiment results, the usability of the novel panel had been proved. We also using numerical simulations to exam the optical properties of the diffractive structures, and theorically explain how the diffractive can work as a PBS, and also anchoring LC molecules.
Key words: zero-order diffractive metal grating, polarizing beam splitter, color filter, anchoring strength, LCD panel.
[1] G. R. Bird and M. Parrish, Jr. The wire grid as a near-infrared polarizer. J. Opt. Soc. Am. 50, 886 (1960).
[2] C. J. Newsome, et. al. Laser etched gratings on polymer layers for alignment of liquid crystals. Appl. Phys. Lett. 72, 2078 (1998).
[3] B. T. Hallam, J. R. Sambles. Groove depth dependence of the anchoring strength of a zero order grating-aligned liquid crystal. Liq. Cryst. 27, 1207 (2000).
[4] S. Kumar. Liquid crystals: Experimental study of physical properties and phase transitions, pp.55. Cambridge University Press (2000).
[5] P. G. de Gennes, J. Prost. The physics of liquid crystals (2nd ed.), pp.1-3. Oxford University Press (1994).
[6] S. Kumar. Liquid crystals: Experimental study of physical properties and phase transitions, pp.2-3. Cambridge University Press (2000).
[7] S. Kumar. Liquid crystals: Experimental study of physical properties and phase transitions, pp.3. Cambridge University Press (2000).
[8] ”Water (molecule)”-Wikipedia (2008), http://en.wikipedia.org/wiki/Water_%28molecule%29
[9] ”Chirality (chemistry)”-Wikipedia (2008), http://en.wikipedia.org/wiki/Chirality_%28chemistry%29
[10] P. J. Collings, M. Hird. Introduction to liquid crystals chemistry and physics, pp.14-15. Taylor & Francis (1997).
[11] S. Chandrasekhar. Liquid crystals (2nd ed.), pp.29. Cambridge University Press (1993)
[12] P. Oswald, P. Pieranski. Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, pp.56. CRC (2005).
[13] P. G. de Gennes, J. Prost. The physics of liquid crystals (2nd ed.), pp.10-18. Oxford University Press (1994).
[14] P. Oswald, P. Pieranski. Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, pp.23. CRC (2005).
[15] P. G. de Gennes, J. Prost. The physics of liquid crystals (2nd ed.), pp.13. Oxford University Press (1994).
[16] P. G. de Gennes, J. Prost. The physics of liquid crystals (2nd ed.), pp.14. Oxford University Press (1994).
[17] P. G. de Gennes, J. Prost. The physics of liquid crystals (2nd ed.), pp.18-26. Oxford University Press (1994).
[18] S. Chandrasekhar. Liquid crystals (2nd ed.), pp.6. Cambridge University Press (1993)
[19] S. Chandrasekhar. Liquid crystals (2nd ed.), pp.6. Cambridge University Press (1993)
[20] P. J. Collings, M. Hird. Introduction to liquid crystals chemistry and physics, pp.11. Taylor & Francis (1997).
[21] P. G. de Gennes, J. Prost. The physics of liquid crystals (2nd ed.), pp.26-28. Oxford University Press (1994).
[22] E. I. Kats, V. V. Lebedev. Fluctuational effects in the dynamics of liquid crystals, pp.xv. Springer (1993)
[23] E. I. Kats, V. V. Lebedev. Fluctuational effects in the dynamics of liquid crystals, pp.xv. Springer (1993)
[24] P. Yeh, C. Gu. Optics of liquid crystal displays, pp.5-8. Wiley-Interscience (1999).
[25] P. Oswald, P. Pieranski. Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, pp.47. CRC (2005).
[26] S. Kumar. Liquid crystals: Experimental study of physical properties and phase transitions, pp.21. Cambridge University Press (2000).
[27] P. J. Collings, M. Hird. Introduction to liquid crystals chemistry and physics, pp.5-9. Taylor & Francis (1997).
[28] P. J. Collings, M. Hird. Introduction to liquid crystals chemistry and physics, pp.8. Taylor & Francis (1997).
[29] P. J. Collings, M. Hird. Introduction to liquid crystals chemistry and physics, pp.8. Taylor & Francis (1997).
[30] P. J. Collings, M. Hird. Introduction to liquid crystals chemistry and physics, pp.5-9. Taylor & Francis (1997).
[31] P. J. Collings, M. Hird. Introduction to liquid crystals chemistry and physics, pp.13. Taylor & Francis (1997).
[32] P. J. Collings, M. Hird. Introduction to liquid crystals chemistry and physics, pp.8. Taylor & Francis (1997).
[33] P. Oswald, P. Pieranski. Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, pp.56. CRC (2005).
[34] P. Oswald, P. Pieranski. Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, pp.56. CRC (2005).
[35] P. G. de Gennes, J. Prost. The physics of liquid crystals (2nd ed.), pp.10. Oxford University Press (1994).
[36] ”Tobacco mosaic virus”-Wikipedia (2008), http://en.wikipedia.org/wiki/Tobacco_mosaic_virus
[37] P. Oswald, P. Pieranski. Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, pp.40-42. CRC (2005).
[38] P. Oswald, P. Pieranski. Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, pp.41. CRC (2005).
[39] P. G. de Gennes, J. Prost. The physics of liquid crystals (2nd ed.), pp.41-43. Oxford University Press (1994).
[40] P. J. Collings, M. Hird. Introduction to liquid crystals chemistry and physics, pp.1-3. Taylor & Francis (1997).
[41] P. Oswald, P. Pieranski. Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, pp.65-71. CRC (2005).
[42] P. G. de Gennes, J. Prost. The physics of liquid crystals (2nd ed.), pp.56-59. Oxford University Press (1994).
[43] P. J. Collings, M. Hird. Introduction to liquid crystals chemistry and physics, pp.23-27. Taylor & Francis (1997).
[44] C.W. Oseen. The theory of liquid crystals. Trans. Faraday Soc. 29, 883 (1933).
[45] F. C. Frank. I. Liquid crystals: On the theory of liquid crystals. Disscuss. Faraday Soc. 25, 19 (1958).
[46] J. N. Reddy. An introduction to the finite element method (3rd ed.), pp.44-47. McGraw-Hill Education (2005).
[47] Y. Tsukada. TFT/LCD: Liquid-crystal displays addressed by thin-film transistors, pp.131-137. CRC (1996).
[48] F. M. Leslie. Distortion of twisted orientation patterns in liquid crystals by magnetic fields. Mol. Cryst. Liq. Cryst. 12, 57 (1970).
[49] P. Yeh, C. Gu. Optics of liquid crystal displays, pp.46-68. Wiley-Interscience (1999).
[50] P. Yeh, C. Gu. Optics of liquid crystal displays, pp.119-136. Wiley-Interscience (1999).
[51] P. Yeh, C. Gu. Optics of liquid crystal displays, pp.282-302. Wiley-Interscience (1999).
[52] P. Yeh, C. Gu. Optics of liquid crystal displays, pp.124, 162. Wiley-Interscience (1999).
[53] P. Yeh, C. Gu. Optics of liquid crystal displays, pp.163-167. Wiley-Interscience (1999).
[54] E. Hecht. Optics (International 4th ed.), pp.652. Addison Wesley (2003).
[55] E. Hecht. Optics (International 4th ed.), pp.652. Addison Wesley (2003).
[56] E. Hecht. Optics (International 4th ed.), pp.510-512. Addison Wesley (2003).
[57] E. Hecht. Optics (International 4th ed.), pp.511. Addison Wesley (2003).
[58] M. G. Moharam, E. B. Grann, D. A. Pommet. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 1068 (1995).
[59] M. G. Moharam, E. B. Grann, D. A. Pommet. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 1068 (1995).
[60] T. K. Gaylord, M. G. Moharam. Analysis and applications of optical diffraction by gratings. Proc. IEEE 73, 894 (1985).
[61] D. K. Cheng. Field and wave electronmagnetics (International 2nd ed.), pp.520-534. Addison Wesley (1989).
[62] D. K. Cheng. Field and wave electronmagnetics (International 2nd ed.), pp.534-562. Addison Wesley (1989).
[63] A. Rapini, M. Papoular. Distortion d’une lamelle nematique sous champ magnetique, conditions d’ancrage aux parois. J. Physique 30, C4-54, C4-56 (1969).
[64] D. W. Berreman. Solid surface shape and the alignment of an adjacent nematic liquid crystal. Phys. Rev. Lett. 28, 1683 (1972).
[65] J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel. The mechanism of polymer alignment of liquid-crystal materials. J. Appl. Phys. 62, 4100 (1987).
[66] J. Fukuda, M. Yoneya, H. Yokoyama. Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined. Phys. Rev. Lett. 98, 187803-1 (2007).
[67] J. C. Slater. Atomic radii in crystals. J. Chem. Phys. 41, 3199 (1964).
[68] E. Clementi, D. L. Raimondi. Atomic screening constants from SCF functions. J. Chem. Phys. 38, 2686 (1963).
[69] J. N. Reddy. An introduction to the finite element method (3rd ed.). McGraw-Hill Education (2005).
[70] Allen Taflove, Susan C. Hagness. Computational electrodynamics: The finite difference time- domain method (2nd ed.), pp.76. Artech House Publishers.
[71] Toralf Scharf. Polarized light in liquid crystals and polymers, pp93-99. Wiley-Interscience (2006).
[72] Allen Taflove, Susan C. Hagness. Computational electrodynamics: The finite difference time- domain method (2nd ed.). Artech House Publishers.
[73] Allen Taflove, Susan C. Hagness. Computational electrodynamics: The finite difference time- domain method (2nd ed.), pp133-138. Artech House Publishers.
[74] Allen Taflove, Susan C. Hagness. Computational electrodynamics: The finite difference time- domain method (2nd ed.), pp.4. Artech House Publishers.
[75] Allen Taflove, Susan C. Hagness. Computational electrodynamics: The finite difference time- domain method (2nd ed.), pp.67-75. Artech House Publishers.
[76] Optiwave inc. OptiFDTD 6.0 technical background and tutorials, pp.24-28. Optiwave inc.
[77] ANSYS inc. Release 10.0 documentation for ANSYS> High-frequency electromagnetic analysis guide> Chapter 4. Performing a high-frequency harmonic analysis> 4.3.1.5. periodic boundary conditions. ANSYS inc.
[78] Allen Taflove, Susan C. Hagness. Computational electrodynamics: The finite difference time- domain method (2nd ed.), pp.569-625. Artech House Publishers.
[79] S. S. Wang, R. Magnusson. Theory and applications of guided-mode resonance filters. Appl. Opt. 32, 2606 (1993).
[80] A. Krishnan, et. al. Evanescently coupled resonance in surface plasmon enhanced transmission. Opt. Commun. 200, 1 (2001).
[81] 許時嘉. 設計與製作高效率平面型偏極光分光器以應用於整合型導光板之偏光轉換器. 國立交通大學光電工程研究所 碩士論文 (2002).
[82] D. K. Cheng. Field and wave electronmagnetics (International 2nd ed.), pp.401-406. Addison Wesley (1989).