簡易檢索 / 詳目顯示

研究生: 王聖揚
Wang, Sheng-Yang
論文名稱: 以降低電容值實現永磁馬達驅動高功因控制
High Power Factor Control for PMSM Drives Using Reduced DC-link Capacitance
指導教授: 謝旻甫
Hsieh, Min-Fu
共同指導教授: 張簡樂仁
Chang-Chien, Le-Ren
白富升
Pai, Fu-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 105
中文關鍵詞: 永磁同步馬達驅動磁場導向控制無電解電容變流器電流控制功率因數校正
外文關鍵詞: permanent magnet synchronous motor, field-oriented control, electrolytic capacitor-less, inverter current control, power factor correction
相關次數: 點閱:164下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般家用電器中驅動永磁同步馬達的變頻器透過整流器獲得直流電,再透過開關切換技術變流為輸入馬達的交流電力。而整流時通常會在直流端並聯大容值的電解電容用以平衡輸入與輸出的功率差值,來達成穩定直流的作用,但是使用大容值電解電容會有壽命較短以及功率因數較低等問題;此外,馬達在驅動時開關切換造成的非線性影響也會造成電源端功因低落,需要透過功因校正來改善,一般會使用額外的開關元件及電感來達成,但同時也增加了體積與額外損耗。
    為改善上述馬達變頻器具有的問題,本文利用低容值之薄膜電容進行永磁同步馬達驅動,可以有效提升整體的功因和系統壽命,但是降低容值會造成直流端電壓產生劇烈波動,造成馬達控制不穩定等問題。因此本文透過負載分析,確認應用系統之穩定性,再配合電流控制調整電源端輸入電流與電壓之間的相位差進一步提高功因,不需使用額外的功因校正電路,因此可實現縮減電路體積及降低整體成本。

    In general home appliances, bridge rectifiers are commonly used to convert AC input into DC output and supply the inverter with DC input power that is used to drive permanent magnet synchronous motors (PMSMs).
    Nowadays, large value aluminium electrolytic (ALE) capacitors are usually utilized at the DC-link of motor drives to balance the input power for the inverter, which can stabilize the fluctuations of the DC-link voltage. However, large capacitances may shorten the lifetime of the driver and reduce the power factor of the system. Also, the non-linear effect caused by the inverter switching method of the driver would lead to a low power factor, which should be improved by power factor correction (PFC).
    Generally, additional electronic components and inductors can be used in order to achieve high input power factor, but at the same time, it will also increase the system volume and cause another unnecessary loss. Due to the above mentioned problems, in this thesis, small film capacitance is applied, which can effectively enhance the input power factor and extend the lifetime of the overall system. Nevertheless, reducing the capacitance will cause a critical voltage fluctuation to the DC-link. As a result, many problems would emerge such as high torque ripple. Therefore, this thesis confirms the stability of the application system by load analysis, and adjust the phase difference between the input current and the voltage of the input power with the current control method. The proposed methods, not only improve the power factor, but also eliminate additional PFC circuit. They also reduce the overall circuit volume and lower the cost of system down.

    中文摘要I AbstractII 誌謝X 目錄XIII 表目錄XVI 圖目錄XVII 符號表XXI 第一章 緒論1 1.1 研究動機與目的1 1.2 文獻回顧3 1.3 論文章節概要8 第二章 永磁同步馬達模型及向量控制系統9 2.1 永磁同步馬達分類9 2.2 永磁同步馬達數學模型11 2.2.1 座標轉換11 2.2.2 永磁同步馬達之電壓方程式15 2.2.3 永磁同步馬達之功率與轉矩方程式20 2.3 永磁同步馬達向量控制系統22 2.3.1 空間向量脈波寬度調變22 2.3.2 向量控制方法分析27 第三章 整流電容功率因數及電壓漣波分析31 3.1 整流電容簡介31 3.2 功率因數定義34 3.2.1 功率因數推導34 3.2.2 二極體導通角大小及電壓漣波對功率因數的影響36 3.3 直流端電壓漣波分析38 3.3.1 電容值大小對電壓漣波分析38 3.3.2 電壓漣波對轉速及轉矩影響44 3.4 負載適用性分析48 第四章 低電容驅動系統高功因控制51 4.1 永磁馬達模型與模擬建置51 4.1.1 馬達模型參數52 4.1.2 向量控制系統架構53 4.1.3 速度環與電流環控制器設計54 4.2 低電容驅動系統高功因電流修正控制58 4.2.1 系統高功因的條件分析58 4.2.2 直流端電壓之相位追蹤60 4.2.3 電容造成之虛功角修正命令66 4.3 容值選取與控制系統整合設計流程70 4.4 整合系統模擬分析與比較72 4.4.1 容值差異於一般磁場導向控制的模擬結果74 4.4.2 加入風扇負載的模擬結果78 4.4.3本文提出之小容值整合系統的模擬結果與比較81 4.4.4 結果與討論83 第五章 硬體在線迴路實驗結果與比較85 5.1 實驗架構85 5.1.1 硬體在線迴路系統86 5.1.2 單晶片數位微處理器89 5.2 實驗結果之驗證與分析90 5.3 討論與綜合比較98 第六章 結論與未來研究建議99 6.1 結論99 6.2 未來研究與建議100 參考文獻101

    [1]工研院綠能所,「家庭電器用電家計簿」,2017年10月。
    [2]M. L. Gasperi, "Life Prediction Model for Aluminum Electrolytic Capacitors," in Proceedings of Industry Applications Conference, 31th IAS Annual Meeting, San Diego, CA, 1996, pp. 1347-1351 vol.3.
    [3]K. Zhao, P. Ciufo, and S. Perera, "Lifetime Analysis of Aluminum Electrolytic Capacitor Subject to Voltage Fluctuations," in Proceedings of 14th International Conference on Harmonics and Quality of Power, Bergamo, 2010, pp. 1-5.
    [4]W. Chen and S. Y. R. Hui, "Elimination of an Electrolytic Capacitor in AC/DC Light-Emitting Diode Driver With High Input Power Factor and Constant Output Current," IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1598-1607, March 2012.
    [5]H. Wang and F. Blaabjerg, "Reliability of Capacitors for DC-Link Applications in Power Electronic Converters—An Overview," IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3569-3578, Sept.-Oct. 2014.
    [6]H. Wang and H. Chung, "A Novel Concept to Reduce the DC-link Capacitor in PFC Front-end Power Conversion Systems," in Proceedings of IEEE Applied Power Electronics Conference and Exposition, Orlando, FL, 2012, pp. 1192-1197.
    [7]P. D. Ziogas, Y. G. Kang, and V. R. Stefanovic, "Rectifier-Inverter Frequency Changers with Suppressed DC Link Components," IEEE Transactions on Industry Applications, vol. IA-22, no. 6, pp. 1027-1036, Nov. 1986.
    [8]J. W. A. Wilson, "The Forced-Commutated Inverter as a Regenerative Rectifier," IEEE Transactions on Industry Applications, vol. IA-14, no. 4, pp. 335-340, July 1978.
    [9]Y. D. Yoon and S. Ki. Sul, "Carrier-Based Modulation Technique for Matrix Converter," IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1691-1703, 2006.
    [10]O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, "Power Factor Correction: A Survey," in Proceedings of Power Electronics Specialists Conference, Vancouver, BC, 2001, pp. 8-13.
    [11]Y. Suzuki, T. Teshima, I. Sugawara, and A. Takeuchi, "Experimental Studies on Active and Passive PFC Circuits," in Proceedings of Power and Energy Systems in Converging Markets, Melbourne, Vic., 1997, pp. 571-578.
    [12]B. Hua, Z. Z. Ming, M. Shuo, L. J. Zheng, and S. X. Ying, "Comparison of Three PWM Strategies-SPWM, SVPWM & One-cycle Control," in Proceedings of International Conference on Power Electronics and Drive Systems, Singapore, Singapore, 2003, pp. 1313-1316.
    [13]International Electrotechnical Commission, "IEC 61000-3-2," 2018.
    [14]Y. Son and J. I. Ha, "Efficiency Improvement in Motor Drive System with Single Phase Diode Rectifier and Small DC-link Capacitor," in Proceedings of IEEE Energy Conversion Congress and Exposition, Pittsburgh, PA, 2014, pp. 3171-3178.
    [15]T. Shimizu, T. Fujita, G. Kimura, and J. Hirose, "A Unity Power Factor PWM Rectifier with DC Ripple Compensation," IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp. 447-455, Aug 1997.
    [16]K. Tsuno, T. Shimizu, K. Wada, and K. Ishii, "Optimization of the DC Ripple Energy Compensating Circuit on a Single-phase Voltage Source PWM Rectifier," in Proceedings of Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 316-321.
    [17]U. Ayhan and A. M. Hava, "Analysis and Characterization of DC Bus Ripple Current of Two-level Inverters Using the Equivalent Centered Harmonic Approach," in Proceedings of IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, 2011, pp. 3830-3837.
    [18]H. Li, K. Zhang, H. Zhao, S. Fan, and J. Xiong, "Active Power Decoupling for High-Power Single-Phase PWM Rectifiers," IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1308-1319, March 2013.
    [19]X. Zhang, X. Ruan, H. Kim, and C. K. Tse, "Adaptive Active Capacitor Converter for Improving Stability of Cascaded DC Power Supply System," IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1807-1816, April 2013.
    [20]李聖揚,「應用於功率因數校正器之主動式電容器研製」,國立台灣大學電機資訊學院電機工程學系碩士論文,2014年7月。
    [21]I. Takahashi and H. Haga, "Power Factor Improvement of Single-phase Diode Rectifier by Fast Field-weakening of Inverter Driven IPM Motor," in Proceedings of IEEE International Conference on Power Electronics and Drive Systems, Denpasar, Indonesia, 2001, pp. 241-246.
    [22]S. W. Kang, S. I. Kim, R. Y. Kim, and D. S. Hyun, "High Power Factor Control of an Inverter-controlled Synchronous Motor Drive System with Small DC-link Capacitor," in Proceedings of Conference of the IEEE Industrial Electronics Society, Vienna, 2013, pp. 7769-7774.
    [23]A. Dianov, N. Kim, Y. Kim, and S. Lim, "Substitution of the Universal Motor Drives with Electrolytic Capacitorless PMSM Drives in Home Appliances," in Proceedings of International Conference on Power Electronics and ECCE Asia, Seoul, 2015, pp. 1631-1637.
    [24]S. W. Kang, S. I. Kim, R. Y. Kim, and D. S. Hyun, "A Novel Power Factor Control for Synchronous Motor Drive System with Small DC-Link Capacitor," in Proceedings of IEEE Vehicle Power and Propulsion Conference, Beijing, 2013, pp. 1-5.
    [25]H. Lamsahel and P. Mutschler, "Permanent Magnet Drives with Reduced DC-link Capacitor for Home Appliances," in Proceedings of Conference of IEEE Industrial Electronics, Porto, 2009, pp. 725-730.
    [26]K. Inazuma, K. Ohishi, and H. Haga, "High-power-factor Control for Inverter Output Power of IPM Motor Driven by Inverter System without Electrolytic Capacitor," in Proceedings of IEEE International Symposium on Industrial Electronics, Gdansk, 2011, pp. 619-624.
    [27]H. S. Jung, S. J. Chee, S. K. Sul, Y. J. Park, H. S. Park and, W. K. Kim, "Control of Three-Phase Inverter for AC Motor Drive With Small DC-Link Capacitor Fed by Single-Phase AC Source," IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1074-1081, March-April 2014.
    [28]K. Abe, K. Ohishi, and H. Haga, "Input Current Harmonics Reduction Control for Electrolytic Capacitor Less Inverter Based IPMSM Drive System," in Proceedings of International Power Electronics Conference, Hiroshima, 2014, pp. 3153-3158.
    [29]H. Utsugi, K. Ohishi, and H. Haga, "Reduction in Current Harmonics of Electrolytic Capacitor-less Diode Rectifier Using Inverter-controlled IPM Motor," in Proceedings of Conference on IEEE Industrial Electronics Society, Montreal, QC, 2012, pp. 6206-6211.
    [30]N. Zhao, G. Wang, D. Xu, L. Zhu, G. Zhang, and J. Huo, "Inverter Power Control Based on DC-Link Voltage Regulation for IPMSM Drives Without Electrolytic Capacitors," IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 558-571, Jan. 2018.
    [31]齊江博,「無電解電容空調永磁壓縮機驅動系統高功率因數控制」,哈爾濱工業大學電氣工程系碩士論文,2016年6月。
    [32]袁雷,胡冰新,魏克銀,陳姝,「現代永磁同步電機控制原理及MATLAB仿真」,北京航空航天大學出版社,2016年3月出版。
    [33]楊國良,李建雄,「永磁同步電機控制技術」,知識產權出版社,2015年3月出版。
    [34]劉昌煥,「交流電機控制」,東華書局,民國95年9月四版。
    [35]X. Pei, Y. Kang, and J. Chen, "Analysis and Calculation of DC-link Current and Voltage Ripple for Three-phase Inverter with Unbalanced Loads," in Proceedings of IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX, 2014, pp. 1565-1572.
    [36]P. A. Dahono, Y. Sato, and T. Kataoka, "Analysis and Minimization of Ripple Components of Input Current and Voltage of PWM Inverters,"in Proceedings of Industry Applications Conference, Thirtieth IAS Annual Meeting, IAS '95., Conference Record of the IEEE, Orlando, FL, 1995, pp. 2444-2450.
    [37]J. H. Tau and Y. Y. Tzou, "PFC Control of Electrolytic Capacitor-less PMSM Drives for Home Appliances," in Proceedings of IEEE 26th International Symposium on Industrial Electronics, Edinburgh, 2017, pp. 335-341.
    [38]陶人豪,「應用於離心式負載之小直流鏈電容高功因永磁同步馬達無感測驅動器之研製」,國立交通大學電控工程研究所碩士論文,2017年5月。
    [39]甘凱盛,「控制功率因數角度之永磁同步風扇馬達高效率無感測V/f控制」,國立交通大學電控工程研究所碩士論文,2012年11月。
    [40]凱登智動科技,「MR series說明書」,Gathertech intelligent automation CO.,LTD, 2016.
    [41]TMS320F28335 Digital Signal Controller datasheet, Texas Instruments, 2017.

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE