簡易檢索 / 詳目顯示

研究生: 謝汶霖
Hsieh, Wen-Lin
論文名稱: 結合點雲之多感知融合定位系統於自駕車之研究
Map-based Localization Research for Autonomous Vehicle Using Multi-sensor
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 76
中文關鍵詞: 車輛導航自動駕駛系統點雲地圖
外文關鍵詞: Vehicle Navigation, Autonomous Driving, Point Cloud Map
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,自動駕駛的技術越來越受重視,自動駕駛車輛不僅能夠降低人力成本,也能降低人為疏失所造成的事故發生,為了達到自動駕駛的功能,精確的車輛定位導航為一相當不可或缺的技術。對於一般的車輛導航而言,GNSS接收器、慣性感測元件與車上的輪速計,常被用來實現感測器融合定位技術。這些感測器具有互補的性質,搭配適當的融合演算法,藉此提供更佳的準確性、完整性與可用性。然而,只使用上述的感測器,難以達到自動駕駛的所需求的定位標準,為了更進一步提升定位的精準度與強健性,通常會再結合相機、雷射雷達並搭配點雲甚至是精密圖資。利用相機或雷射雷達掃描的結果與點雲或精密圖資匹配,估算當前車輛的姿態與位置,被稱為基於地圖資訊的定位。
    本論文以LiDAR搭配點雲地圖作為車輛定位的基礎,並結合GNSS、IMU和輪速計增加系統的強健性。為了要即時多工處理各項感測器的信息,本研究以機器人作業系統作為核心,負責演算法運算與感測器資料之整合與應用,並利用擴展式卡爾曼濾波器進行車輛狀態的量測估計與更新,實現較高精度且強健的即時定位系統。但不可忽視的是每種感測器都可能有失靈情況發生,為了驗證此系統的強健性,本論文亦探討在特定感測器失效或異常的情況下,系統的定位準確度,並且在不同的環境下實測。

    In recent years, the technology of autonomous vehicle is attracting more and more attention. In order to achieve the function of autonomous driving, precise vehicle positioning is an essential technology. For the navigation of a vehicle, Global Satellite Navigation System (GNSS) and Inertial Measurement Unit (IMU), and wheel speed sensor are often employed to implement a fused navigation solution. These sensors have complementary properties, coupled with appropriate fusion algorithms, to provide better accuracy, integrity, and availability. However, using only the sensors mentioned above, it is difficult to achieve the required positioning performance for autonomous driving.
    In order to further improve the accuracy and robustness of the positioning system. The thesis studies the use of LiDAR-based navigation system for autonomous vehicle with 3D point cloud map. To match scans and point cloud map, normal distribution transformation algorithm is adopted for scans aligning. Moreover, to increase the robustness of the system, GNSS, IMU and odometer are also employed in this system. In practice, it might happen that sensors cannot work or stuck in abnormal status. To verify the robustness of this system, this thesis also evaluates the accuracy of the positioning of the system in the case of failure or abnormality of specific sensor.
    Finally, we performed several experiments in different scenarios. The results show that the navigation system with map aided, the system can keep a high performance, even if the vehicle drives in GNSS-denied environment.

    摘要 I 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言與動機 1 1.2 文獻回顧 2 1.3 論文貢獻 2 1.4 論文架構 2 第二章 導航系統 4 2.1 全球衛星導航系統(Global Navigation Satellite System) 4 2.1.1 GNSS簡介 4 2.1.2 GNSS定位原理 4 2.1.3 GNSS定位算法 5 2.2 慣性導航系統(Inertial Navigation System) 8 2.2.1 慣性導航系統簡介 8 2.2.2 慣性性感測元件 9 2.2.3 捷聯式慣性導航系統 12 2.3 座標系統與座標轉換 14 2.3.1 座標系統 14 2.3.2 座標轉換 17 2.4 GNSS/INS整合式導航系統 21 2.4.1 GNSS/INS整合式導航系統架構 22 2.4.2 卡爾曼濾波器 23 第三章 基於點雲之定位 27 3.1 常態分佈轉換(Normal Distribution Transform, NDT) 27 3.2 NDT匹配與定位 31 3.3 點雲地圖之生成與評估 34 第四章 實驗架構及結果分析 56 4.1 實驗設備與設置 56 4.2 多感知融合 58 4.2.1車輛運動模型 58 4.2.2定位系統架構 60 4.3 實驗與結果 62 第五章 結論與未來工作 72 5.1 結論 72 5.2 未來工作 73 參考文獻 74

    [1] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House, 2008.
    [2] 莊智清, 衛星導航. 全華圖書, 2012.
    [3] X. F. He, Y. Q. Chen, and J. Y. Liu, "Development of a Low Cost Integrated GPS/IMU," IEEE Aerospace and Electronic System Magazine," Vol. 13, No.12, pp. 6-10, 1998.
    [4] L. Zhao, W. Y. Ochieng, M. A. Quddus, and R. B. Noland, "An Extended Kalman Filter Algorithm for Integrating GPS and Low Cost Dead Reckoning System Data for Vehicle Performance and Emissions Monitoring," The Journal of Navigation, Vol. 56, pp. 257-275, 2003.
    [5] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping (SLAM): Part I the essential algorithms," IEEE Robot. Autom. Mag., Vol. 13, No. 2, pp. 99-110, Jun. 2006.
    [6] T. Bailey and H. Durrant-Whyte, "Simultaneous localization and mapping (SLAM): Part II," IEEE Robotics & Automation Magazine, Vol. 13, No. 3, pp. 108-117, Sept. 2006.
    [7] J. Levinson, M. Montemerlo and, S. Thrun, "Map-Based Precision Vehicle Localization in Urban Environments," Robotics Science and Systems, 2007.
    [8] J. Bedkowski, M. Pelka, K. Majek, T. Fitri, and J. Naruniec, "Open source robotic 3D mapping framework with Robot Operating System PCL - Point Cloud Library and Cloud Compare", The 5th International Conference on Electrical Engineering and Informatics 2015, 2015.
    [9] L. Wang, Y. Zhang, and J. Wang, "Map-Based Localization Method for Autonomous Vehicles Using 3D-LIDAR," IFAC-PapersOnLine, 50(1), pp. 276–281, 2017.
    [10] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada, "An Open Approach to Autonomous Vehicles," IEEE Micro, Vol. 35, No. 6, pp. 60-68, Nov.-Dec. 2015.
    [11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, "ROS: An open-source robot operating system", Proc. ICRA Workshop Open Source Software, pp. 1-6, 2009.
    [12] A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, "A comparison between different error modeling of MEMS applied to GPS/INS integrated systems," Sensors, Vol. 13, pp. 9549-9588, Aug. 2013.
    [13] M. El-Diasty and S. Pagiatakis, "A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors," Sensors, vol. 9, pp. 8473–8489, Nov. 2009.
    [14] Z. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, "A new multi-position calibration method for MEMS inertial navigation systems," Meas. Sci. Technol., Vol. 18, No. 7, pp. 1897-1907, Jul. 2007.
    [15] K. Gade, Introduction to Inertial Navigation and Kalman Filtering, Retrieved from http://www.navlab.net.
    [16] J. Seo, H. K. Lee, J. G. Lee, and C. G. Park, "Lever arm compensation for GPS/INS/odometer integrated system," International Journal of Control, Automation, and Systems, Vol. 4, No. 2, pp.247-254, 2006.
    [17] S. Hong, M. H. Lee, H. H. Chun, S. H. Kwon, and J. L. Speyer, "Experimental study on the estimation of lever arm in GPS/INS," IEEE Trans. Veh. Technol., Vol. 55, No. 2, pp. 431-448, Mar. 2006.
    [18] R. E. Kalman, "A new approach to linear filtering and prediction problems," Trans. ASME J. Basic Eng., Vol. 82, pp. 34-45, Mar. 1960.
    [19] A. Noureldin, T. B. Karamat, and J. Georgy, Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration, Springer Science Business Media. 2012.
    [20] L. C. Hun, O. L. Yeng, L. T. Sze, and K. V. Chet, Kalman Filtering and Its Real‐Time Applications, Real-time Systems, K. Jian, Ed., ed Rijeka: InTech, p. Ch. 06, 2016
    [21] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology. Stevenage, U.K.: Peregrinus, 1997.
    [22] P. Biber and W. Strasser, "The normal distributions transform: a new approach to laser scan matching," Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol.3, pp. 2743-2748, 2003
    [23] M. Magnusson, A. Lilienthal and T. Duckett, "Scan registration for autonomous mining vehicles using 3D-NDT," J. Field Robot., Vol. 24, No. 10, pp. 803-827, 2007.
    [24] M. Magnusson, The Three-Dimensional NormalDistributions Transform — an Efficient Representation for Registration, Surface Analysis, and Loop Detection. Ph.D. thesis, Örebro University, 2009.
    [25] P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256, Feb. 1992.
    [26] J. C. Juang, Lecture Note on Strapdown Inertial Navigation and Integrated Navigation, National Cheng Kung University, 2017.
    [27] S. L. Yu, Integrated camera/Laser/IMU/RTK-GPS Localization System for Autonomous Vehicles, MS thesis, National Cheng Kung University, 2016.
    [28] D. W. Tsou, Research of Dynamic Vehicle Positioning in Different Driving Scenarios, MS thesis, National Cheng Kung University, 2017.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE