簡易檢索 / 詳目顯示

研究生: 謝伊婷
Hsieh, Yi-TIng
論文名稱: 在離子液體中利用電化學法製備銅-錫合金的奈米結構
Electrochemical preparation of Copper-Tin and Gold nanostructures from ionic liquids
指導教授: 孫亦文
Sun, I-Wen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 135
中文關鍵詞: 離子液體電沉積奈米線多孔性金銅錫合金
外文關鍵詞: ionic liquid, electrodeposition, nanowires, nanoporous gold, CuSn alloy
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以利用電化學法在離子液體中製備金屬奈米材料,可分為兩部分: (一)在室溫型離子液體(EMI-DCA)中電沉積銅-錫合金奈米材料;(二)在路易士酸性的離子液體(ZnCl2-EMIC)中,電沉積金鋅的奈米線以及金的多孔性奈米線。
    利用電化學方法可以單一步驟製備出銅-錫合金的六角形中空管柱和奈米刷,利用改變不同銅-錫濃度比例,在低電流密度-0.4毫安培/平方公分下,經由粉末x光繞射儀和元素分析儀可以得知六角中空柱由Cu10Sn3相組成,而奈米刷則由Cu3Sn相組成。除此之外,利用改變溶液中銅錫濃度、電位和電流,可以控制鍍層的形貌。
    利用較大的過電位在路易士酸性的鋅鹽中可直接電鍍出金鋅的奈米線,而在奈米線中金的成分可以利用控制溶液中四氯化金的濃度而改變。多孔性金奈米線則可以利用氯化氫酸蝕或是在適當的環境下直接電鍍獲得。所得的鍍層可利用掃描式電子顯微鏡、粉末x光繞射和穿透式電子顯微鏡去觀察其結構。此外,多孔性金奈米線在甲醇、甘油以及葡萄糖上都有良好的電催化效果。

    In this dissertation, we used electrochemical method to fabricate metal alloy nanostructures without using any template and additive. The contents include (1) electrodeposition of CuSn nanostructures in room temperature 1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA) ionic liquid; (2) electrodeposition of Au nanowires and Au nanoporous wires in Lewis acidic ZnCl2-EMIC ionic liquid.
    One-step electrochemical synthesis of free standing hexagonal hollow CuSn tube arrays and hierarchical nanobrushes are achieved in a room temperature 1-ethyl-3-methylimidazolium dicyanamide ionic liquid containing different molar ratio of Cu(I) and Sn(II) at a low current density of -0.4 mA cm-2. Powder x-ray indicated that the hollow tube is referring to Cu10Sn3, and the nanobrush is referring Cu3Sn phase. This study also shows that morphologies of the deposits can be manipulated by the Cu(I)/Sn(II) concentrations in the solution, and thus, offers a method for reproducible preparation of the nanostructures.
    Direct template-free electrodeposition of AuZn nanowires were achieved on a tungsten substrate in a quiescent Lewis acidic ZnCl2–EMIC ionic liquid containing HAuCl4‧3H2O at 90℃ by applying an extremely large deposition overpotential. The content of the gold could be tuned by adding different concentration of Au(III) in the electrolyte. The Au nanoporous wires could be obtained by free corrosion in HCl solution and direct electrodeposition in a certain condition. The deposits were characterized by scanning electron microscopy, powder X-ray diffraction and transmission electron microscopy. Moreover, Au nanoporous wire electrodes show the significantly enhanced current for methanol, glycerol and glucose oxidation reactions.

    中文摘要 i Abstract ii 誌謝 iv Contents vi List of tables ix List of figures xi List of symbols xxi Chapter 1 Introduction 1 1.1 Introduction of ionic liquids 1 1.2 Motivation and Literature review of Copper-Tin alloy 9 1.3 Motivation and Literature review of Gold nanowires and nanoporous gold wires 11 Chapter 2 Electrochemical theory and method 17 2.1 Electrochemical theory 17 2.2 Voltammetric methods 19 2.3 Chronoamperometry 23 2.4 Chronopotentiometry 24 Chapter 3 Experimental Section 25 3.1 Electrochemical setup 25 3.2 Instruments 27 3.3 Reagents 29 Chapter 4 Electrochemical studies of copper-tin alloy in room temperature EMI-DCA ionic liquid 34 4.1 The electrochemical behavior of CuCl and SnCl2 in EMI-DCA ionic liquid 34 4.2 Preparation of Copper-Tin alloy in EMI-DCA ionic liquid 42 4.2.1 Electrodeposition in EMI-DCA containing 33 mM CuCl -16.5 mM SnCl2 42 4.2.2 Electrodeposition in EMI-DCA containing 25 mM CuCl -25 mM SnCl2 55 4.2.3 Electrodeposition in EMI-DCA containing 16.5 mM CuCl -33 mM SnCl2 60 4.3 Summary 70 Chapter 5 Electrochemical studies of Au and AuZn nanowires in 40-60 mol% ZnCl2-EMIC ionic liquid 71 5.1 The electrochemical behavior of HAuCl4‧3H2O in 40-60 mol% ZnCl2-EMIC ionic liquid 71 5.2 Preparation of Au and AuZn nanowires in 40-60 mol% ZnCl2-EMIC ionic liquid 88 5.2.1 Electrodeposition of pure gold in 40-60 mol% ZnCl2-EMIC ionic liquid 88 5.2.2 Electrodeposition of Au and AuZn nanowires 40-60 mol% ZnCl2-EMIC ionic liquid 90 5.3 Diluents of 40-60 mol% ZnCl2-EMIC in EMI-BF4 ionic liquid 112 5.4 Electrocatalysis by using nanoporous gold wires 117 5.5 Summary 124 Chapter 6 Conclusion 125 Reference 127

    [1] J.S. Wilkes: A short history of ionic liquids—from molten salts to neoteric solvents, Green Chemistry, 4, 73-80 (2002).
    [2] M. Galiński, A. Lewandowski, I. Stępniak: Ionic liquids as electrolytes, Electrochimica Acta, 51, 5567-5580 (2006).
    [3] D. Wei, A. Ivaska: Applications of ionic liquids in electrochemical sensors, Analytica chimica acta, 607, 126-135 (2008).
    [4] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati: Ionic-liquid materials for the electrochemical challenges of the future, Nature materials, 8, 621-629 (2009).
    [5] L.E. Barrosse-Antle, A.M. Bond, R.G. Compton, A.M. O'Mahony, E.I. Rogers, D.S. Silvester: Voltammetry in room temperature ionic liquids: comparisons and contrasts with conventional electrochemical solvents, Chemistry, an Asian journal, 5, 202-230 (2010).
    [6] H. Liu, Y. Liub, J. Li: Ionic liquids in surface electrochemistry, Physical Chemistry Chemical Physics, 12, 1685-1697 (2010).
    [7] F. Endres, A.P. Abbott, D.R. MacFarlane, Electrodeposition from ionic liquids, in, John Wiley and Sons Ltd. Wiley-VCH 2008.
    [8] M. Freemantle, An introduction to ionic liquids, RSC Pbulishing, 2010.
    [9] P. Walden: Bull. Acad. Sci. St. Petersburg, 405 (1914).
    [10] F.H. Hurley, T.P. Wier: Electrodeposition of metals from fused quaternary ammonium salts, Journal of the Electrochemical Society, 98, 203-206 (1951).
    [11] F.H. Hurley, T.P. Wier: The electrodeposition of aluminum from nonaqueous solution at room temperature, Journal of the Electrochemical Society, 98, 207-212 (1951).
    [12] R.J. Gale, B. Gilbert, R.A. Osteryoung: Raman-spectra of molten aluminum-chloride-1-butylpyridinium chloride systems at ambient temperatures, Inorganic Chemistry, 17, 2728-2729 (1978).
    [13] J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L. Hussey: Dialkylimidazolium chloroaluminate melts-a new class of room temperature ionic liquids for electrochemistry, spectroscopy, and sythesis, Inorganic Chemistry, 21, 1263-1264 (1982).
    [14] J.S. Wilkes, M.J. Zaworotko: Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, Journal of the Chemical Society-Chemical Communications, 965-967 (1992).
    [15] J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chemistry, 3, 156-164 (2001).
    [16] P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel: Hydrophobic, highly conductive ambient-temperature molten salts, Inorganic Chemistry, 35, 1168-1178 (1996).
    [17] S.I. Hsiu, J.F. Huang, I.W. Sun, C.H. Yuan, J. Shiea: Lewis acidity dependency of the electrochemical window of zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids, Electrochimica Acta, 47, 4367-4372 (2002).
    [18] J. Huang, Electrochemical applications of low temperature zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid, in: Chemistry, National Cheng Kung University, 1995.
    [19] M.-J. Deng, P.-Y. Chen, T.-I. Leong, I.W. Sun, J.-K. Chang, W.-T. Tsai: Dicyanamide anion based ionic liquids for electrodeposition of metals, Electrochemistry Communications, 10, 213-216 (2008).
    [20] D.R. MacFarlane, S.A. Forsyth, J. Golding, G.B. Deacon: Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion, Green Chemistry, 4, 444-448 (2002).
    [21] S.R. Batten, P. Jensen, B. Moubaraki, K.S. Murray, R. Robson: Structure and molecular magnetism of the rutile-related compounds M(dca)(2), M = Co(II), Ni(II), Cu(II), dca = dicyanamide, N(CN)(2), Chemical Communications, 439-440 (1998).
    [22] D.B. Zhao, Z.F. Fei, R. Scopelliti, P.J. Dyson: Synthesis and characterization of ionic liquids incorporating the nitrile functionality, Inorganic Chemistry, 43, 2197-2205 (2004).
    [23] J.A. Widegren, E.M. Saurer, K.N. Marsh, J.W. Magee: Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity, Journal of Chemical Thermodynamics, 37, 569-575 (2005).
    [24] H. Matsumoto, M. Yanagida, K. Tanimoto, M. Nomura, Y. Kitagawa, Y. Miyazaki: Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide, Chemistry Letters, 922-923 (2000).
    [25] Y. Yoshida, O. Baba, G. Saito: Ionic Liquids Based on Dicyanamide Anion: Influence of Structural Variations in Cationic Structures on Ionic Conductivity, J. Phys. Chem. B, 111, 4742-4749 (2007).
    [26] T.-I. Leong, I.W. Sun, M.-J. Deng, C.-M. Wu, P.-Y. Chen: Electrochemical study of copper in the 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid, Journal of the Electrochemical Society, 155, F55-F60 (2008).
    [27] J. Fuller, A.C. Breda, R.T. Carlin: Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids, Journal of Electroanalytical Chemistry, 459, 29-34 (1998).
    [28] T. Nishida, Y. Tashiro, M. Yamamoto: Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte, Journal of Fluorine Chemistry, 120, 135-141 (2003).
    [29] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed: Ionic liquid analogues formed from hydrated metal salts, Chemistry-a European Journal, 10, 3769-3774 (2004).
    [30] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, J. Archer, C. John: Electrodeposition of chromium black from ionic liquids, Transactions of the Institute of Metal Finishing, 82, 14-17 (2004).
    [31] I. Volov, X. Sun, G. Gadikota, P. Shi, A.C. West: Electrodeposition of copper-tin film alloys for interconnect applications, Electrochimica Acta, 89, 792-797 (2013).
    [32] D. Padhi, S. Gandikota, H.B. Nguyen, C. McGuirk, S. Ramanathan, J. Yahalom, G. Dixit: Electrodeposition of copper-tin alloy thin films for microelectronic applications, Electrochimica Acta, 48, 935-943 (2003).
    [33] M. Jordan, The electrodeposition of tin and its alloys, Eugen G. Leuze publishers, 1999.
    [34] M. Schlesinger, M. Paunovic, Modern Electroplating, 5th ed., John Wiley & Sons, 2010.
    [35] B.D. Polat, N. Sezgin, O. Keles, K. Kazmanli, A. Abouimrane, K. Amine: A nano-architectured porous electrode assembly of copper rich Cu6Sn5 thin film for rechargeable lithium batteries, Journal of Alloys and Compounds, 554, 204-207 (2013).
    [36] C.D. Gu, Y.J. Mai, J.P. Zhou, Y.H. You, J.P. Tu: Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery, Journal of Power Sources, 214, 200-207 (2012).
    [37] C. Han, Q. Liu, D.G. Ivey: Nucleation of Sn and Sn–Cu alloys on Pt during electrodeposition from Sn–citrate and Sn–Cu–citrate solutions, Electrochimica Acta, 54, 3419-3427 (2009).
    [38] C. Han, Q. Liu, D.G. Ivey: Nucleation of Sn and Sn-Cu alloys on Pt during electrodeposition from Sn-citrate and Sn-Cu-citrate solutions, Electrochimica Acta, 54, 3419-3427 (2009).
    [39] A. Survila, Z. Mockus, S. Kanapeckaitė, V. Jasulaitienė, R. Juškėnas: Codeposition of copper and tin from acid sulphate solutions containing gluconic acid, Journal of Electroanalytical Chemistry, 647, 123-127 (2010).
    [40] A. Survila, D. Bražinskienė, S. Kanapeckaitė, Z. Mockus, V. Jasulaitienė: Codeposition of copper and tin from acidic sulfate solutions containing polyethylene glycols. Effect of length of the hydrocarbon chain, Journal of Solid State Electrochemistry, 14, 507-514 (2008).
    [41] A.N. Correia, M.X. Façanha, P. de Lima-Neto: Cu–Sn coatings obtained from pyrophosphate-based electrolytes, Surface & Coatings Technology, 201, 7216-7221 (2007).
    [42] I.A. Carlos, C.A.C. Souza, E. Pallone, R.H.P. Francisco, V. Cardoso, B.S. Lima-Neto: Effect of tartrate on the morphological characteristics of the copper-tin electrodeposits from a noncyanide acid bath, Journal of Applied Electrochemistry, 30, 987-994 (2000).
    [43] I.A. Carlos, E.D. Bidoia, E. Pallone, M.R.H. Almeida, C.A.C. Souza: Effect of tartrate content on aging and deposition condition of copper-tin electrodeposits from a non-cyanide acid bath, Surface & Coatings Technology, 157, 14-18 (2002).
    [44] C.T.J. Low, F.C. Walsh: Electrodeposition of tin, copper and tin-copper alloys from a methanesulfonic acid electrolyte containing a perfluorinated cationic surfactant, Surface & Coatings Technology, 202, 1339-1349 (2008).
    [45] N. Pewnim, S. Roy: Electrodeposition of tin-rich Cu-Sn alloys from a methanesulfonic acid electrolyte, Electrochimica Acta, 90, 498-506 (2013).
    [46] N. Pewnim, S. Roy: Effect of fluorosurfactant on copper-tin reduction from methanesulphonic acid electrolyte, Transactions of the Institute of Metal Finishing, 89, 206-209 (2011).
    [47] C. Cachet, M. Keddam, V. Mariotte, R. Wiart: Adsorption of perfluorinated surfactants on glod electrodes.1.comparision of nonionic compounds, Electrochimica Acta, 37, 2377-2383 (1992).
    [48] C. Cachet, M. Keddam, V. Mariotte, R. Wiart: Adsoprtion of perfluorinated surfactants on gold electrodes.2.behavior of ionic compounds, Electrochimica Acta, 38, 2203-2208 (1993).
    [49] C. Cachet, M. Keddam, V. Mariotte, R. Wiart: Influence of perfluorinated and hygrofenated surfactants upon hydrogen evolution on gold electrodes, Electrochimica Acta, 39, 2743-2750 (1994).
    [50] Y.S. Fung, D.R. Zhu: Electrodeposited tin coating as negative electrode material for lithium-ion battery in room temperature molten salt, Journal of the Electrochemical Society, 149, A319-A324 (2002).
    [51] T. Katase, R. Kurosaki, K. Murase, T. Hirato, Y. Awakura: Formation of Cu-Sn alloy layer by contact deposition using quaternary ammonium-imide-type ionic liquid, Electrochemical and Solid State Letters, 9, C69-C72 (2006).
    [52] K. Murase, R. Kurosaki, T. Katase, H. Sugimura, T. Hirato, Y. Awakura: Electrochemical alloying of copper substrate with tin using ionic liquid as an electrolyte at medium-low temperatures, Journal of the Electrochemical Society, 154, D612-D616 (2007).
    [53] A. Ito, K. Murase, T. Ichii, H. Sugimura: Cu-Sn alloy metallization of polymer substrate through reduction-diffusion method using ionic liquid bath at medium-low temperatures, Electrochemistry, 77, 677-679 (2009).
    [54] K. Murase, A. Ito, T. Ichii, H. Sugimura: Preparation of Cu-Sn layers on polymer substrate by reduction-diffusion method using ionic liquid baths, Journal of the Electrochemical Society, 158, D335-D341 (2011).
    [55] M.-J. Deng, T.-I. Leong, I.W. Sun, P.-Y. Chen, J.-K. Chang, W.-T. Tsai: Fabrication of porous tin by template-free electrodeposition of tin nanowires from an ionic liquid, Electrochemical and Solid State Letters, 11, D85-D88 (2008).
    [56] M.-J. Deng, J.-K. Chang, T.-I. Leong, S.-W. Fang, P.-Y. Chen, I.W. Sun: Electrodeposition of nanostructured Sn in 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid, Electrochemistry, 77, 588-590 (2009).
    [57] T.I. Leong, Y.T. Hsieh, I.W. Sun: Electrochemistry of tin in the 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid, Electrochimica Acta, 56, 3941-3946 (2011).
    [58] Y.-T. Hsieh, T.-I. Leong, C.-C. Huang, C.-S. Yeh, I.W. Sun: Direct template-free electrochemical growth of hexagonal CuSn tubes from an ionic liquid, Chemical Communications, 46, 484-486 (2010).
    [59] Y.-T. Hsieh, I.W. Sun: Electrochemical growth of hierarchical CuSn nanobrushes from an ionic liquid, Electrochemistry Communications, 13, 1510-1513 (2011).
    [60] T. Kawawaki, Y. Takahashi, T. Tatsuma: Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling, Journal of Physical Chemistry C, 117, 5901-5907 (2013).
    [61] Z. Huo, C.-k. Tsung, W. Huang, X. Zhang, P. Yang: Sub-two nanometer single crystal Au nanowires, Nano Letters, 8, 2041-2044 (2008).
    [62] H. Feng, Y. Yang, Y. You, G. Li, J. Guo, T. Yu, Z. Shen, T. Wu, B. Xing: Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering, Chemical Communications, 1984-1986 (2009).
    [63] C.E. Cross, J.C. Hemminger, R.M. Penner: Physical vapor deposition of one-dimensional nanoparticle arrays on graphite: Seeding the Electrodeposition of gold nanowires, Langmuir, 23, 10372-10379 (2007).
    [64] J. Fronheiser, J. Balch, L. Tsakalakos: Conformal dielectric films on silicon nanowire arrays by plasma enhanced chemical vapor deposition, Journal of Nanoparticle Research, 10, 955-963 (2008).
    [65] B. Xiang, P. Wang, X. Zhang, S.A. Dayeh, D.P.R. Aplin, C. Soci, D. Yu, D. Wang: Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition, Nano Letters, 7, 323-328 (2007).
    [66] L.H. Pei, K. Mori, M. Adachi: Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization, Langmuir, 20, 7837-7843 (2004).
    [67] B. Wu, J.J. Boland: Synthesis and dispersion of isolated high aspect ratio gold nanowires, Journal of colloid and interface science, 303, 611-616 (2006).
    [68] H. Bai, K. Xu, Y. Xu, H. Matsui: Fabrication of Au nanowires of uniform length and diameter using a monodisperse and rigid biomolecular template: collagen-like triple helix, Angew Chem Int Ed Engl, 46, 3319-3322 (2007).
    [69] L. Soleimany, A. Dolati, M. Ghorbani: A study on the kinetics of gold nanowire electrodeposition in polycarbonate templates, Journal of Electroanalytical Chemistry, 645, 28-34 (2010).
    [70] Z. Huo, C.K. Tsung, W. Huang, X. Zhang, P. Yang: Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction, Nano Lett, 8, 2041-2044 (2008).
    [71] H. Feng, Y. Yang, Y. You, G. Li, J. Guo, T. Yu, Z. Shen, T. Wu, B. Xing: Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering, Chemical Communications, 1984-1986 (2009).
    [72] N. Tasaltin, S. Ozturk, N. Kilinc, H. Yuzer, Z.Z. Ozturk: Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte, Nanoscale Research Letters, 5, 1137-1143 (2010).
    [73] Y.K. Xiao, G. Yu, J. Yuan, J.Y. Wang, Z.Z. Chen: Fabrication of Pd-Ni alloy nanowire arrays on HOPG surface by electrodeposition, Electrochimica Acta, 51, 4218-4227 (2006).
    [74] Y. Xiao, B. Weng, G. Yu, J. Wang, B. Hu, Z. Chen: Electrodeposition of Pd-Ag alloy nanowires on highly oriented pyrolytic graphite, Journal of Applied Electrochemistry, 36, 807-812 (2006).
    [75] J. Dupont, G.S. Fonseca, A.P. Umpierre, P.F.P. Fichtner, S.R. Teixeir: Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions, J. AM. CHEM. SOC., 124, 4228-4229 (2002).
    [76] C.C. Cassol, A.P. Umpierre, G. Machado, S.I. Wolke, J. Dupont: The role of Pd nanoparticles in ionic liquid in the Heck reaction, Journal of the American Chemical Society, 127, 3298-3299 (2005).
    [77] W.W. Wang, Y.J. Zhu: Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt, Inorganic Chemistry Communications, 7, 1003-1005 (2004).
    [78] P. Devendran, T. Alagesan, K. Pandian: Single Pot Microwave Synthesis of CdS Nanoparticles in Ionic Liquid and Their Photocatalytic Application, Asian Journal of Chemistry, 25, S79-S82 (2013).
    [79] T.-H. Tsai, S. Thiagarajan, S.-M. Chen: Green Synthesis of Silver Nanoparticles Using Ionic Liquid and Application for the Detection of Dissolved Oxygen, Electroanalysis, 22, 680-687 (2010).
    [80] A.I. Bhatt, A. Mechler, L.L. Martin, A.M. Bond: Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation, Journal of Materials Chemistry, 17, 2241-2250 (2007).
    [81] Y. Wang, H. Yang: Synthesis of CoPt nanorods in ionic liquids, Journal of the American Chemical Society, 127, 5316-5317 (2005).
    [82] A. Kumar, S. Murugesan, V. Pushparaj, J. Xie, C. Soldano, G. John, O. Nalamasu, P.M. Ajayan, R.J. Linhardt: Conducting organic-metallic composite submicrometer rods based on ionic liquids, Small, 3, 429-433 (2007).
    [83] T. Alammar, O. Shekhah, J. Wohlgemuth, A.-V. Mudring: Ultrasound-assisted synthesis of mesoporous beta-Ni(OH)(2) and NiO nano-sheets using ionic liquids, Journal of Materials Chemistry, 22, 18252-18260 (2012).
    [84] Z.H. Li, Z.M. Liu, J.L. Zhang, B.X. Han, J.M. Du, Y.N. Gao, T. Jiang: Synthesis of single-crystal gold nanosheets of large size in ionic liquids, Journal of Physical Chemistry B, 109, 14445-14448 (2005).
    [85] L. Ren, L. Meng, Q. Lu, Z. Fei, P.J. Dyson: Fabrication of gold nano- and microstructures in ionic liquids - A remarkable anion effect, Journal of colloid and interface science, 323, 260-266 (2008).
    [86] M. Scariot, D.O. Silva, J.D. Scholten, G. Machado, S.R. Teixeira, M.A. Novak, G. Ebeling, J. Dupont: Cobalt Nanocubes in Ionic Liquids: Synthesis and Properties, Angewandte Chemie-International Edition, 47, 9075-9078 (2008).
    [87] V. Chakrapani, F. Rusli, M.A. Filler, P.A. Kohl: Quaternary Ammonium Ionic Liquid Electrolyte for a Silicon Nanowire-Based Lithium Ion Battery, Journal of Physical Chemistry C, 115, 22048-22053 (2011).
    [88] J.-M. Yang, S.-P. Gou, I.W. Sun: Single-step large-scale and template-free electrochemical growth of Ni-Zn alloy filament arrays from a zinc chloride based ionic liquid, Chemical Communications, 46, 2686-2688 (2010).
    [89] J.-M. Yang, Y.-T. Hsieh, D.-X. Zhuang, I.W. Sun: Direct electrodeposition of FeCoZn wire arrays from a zinc chloride-based ionic liquid, Electrochemistry Communications, 13, 1178-1181 (2011).
    [90] A. Wittstock, J. Biener, J. Erlebacher, M. Baumer, Nanoporous gold, RSC Publishing, 2012.
    [91] Q. Zhang, X. Wang, Z. Qi, Y. Wang, Z. Zhang: A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution, Electrochimica Acta, 54, 6190-6198 (2009).
    [92] Z. Zhang, Y. Wang, Z. Qi, J. Lin, X. Bian: Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al-Au alloys, Journal of Physical Chemistry C, 113, 1308-1314 (2009).
    [93] R. Morrish, K. Dorame, A.J. Muscat: Formation of nanoporous Au by dealloying AuCu thin films in HNO3, Scripta Materialia, 64, 856-859 (2011).
    [94] N.A. Senior, R.C. Newman: Synthesis of tough nanoporous metals by controlled electrolytic dealloying, Nanotechnology, 17, 2311-2316 (2006).
    [95] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrow, K. Sieradzki: Evolution of nanoporosity in dealloying, Nature, 410, 450-453 (2001).
    [96] P.R. Swann, H.W. Pickering: Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking, Corrosion, 373t (1963).
    [97] A.J. Forty: Corrosion micro-morphology of noble-metal alloys and dpletion gilding Nature, 282, 597-598 (1979).
    [98] A.J. Forty, P. Durkin: A micro-morphological study of the dissolution of silver-gold alloys in nitric acid, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 42, 295-318 (1980).
    [99] M.C. Dixon, T.A. Daniel, M. Hieda, D.M. Smilgies, M.H.W. Chan, D.L. Allara: Preparation, structure, and optical properties of nanoporous gold thin films, Langmuir, 23, 2414-2422 (2007).
    [100] L. Komsiyska, G. Staikov: Electrocrystallization of Au nanoparticles on glassy carbon from HClO4 solution containing AuCl4 (-), Electrochimica Acta, 54, 168-172 (2008).
    [101] X.-H. Xu, C.L. Hussey: The electrochemistry of gold at glassy carbon in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride molten salt, Journal of the Electrochemical Society, 139, 3103-3108 (1992).
    [102] L. Aldous, D.S. Silvester, C. Villagr?n, W.R. Pitner, R.G. Compton, M. Cristina Lagunas, C. Hardacre: Electrochemical studies of gold and chloride in ionic liquids, New Journal of Chemistry, 30, 1576 (2006).
    [103] L. Aldous, D.S. Silvester, W.R. Pitner, R.G. Compton, M.C. Lagunas, C. Hardacre: Voltammetric studies of gold, protons, and [HCl2]- in ionic liquids, Journal of Physical Chemistry C, 111, 8496-8503 (2007).
    [104] T. Oyama, T. Okajima, T. Ohsaka: Electrodeposition of gold at glassy carbon electrodes in room-temperature ionic liquids, Journal of the Electrochemical Society, 154, D322 (2007).
    [105] A.I. de Sá, S. Eugénio, S. Quaresma, C.M. Rangel, R. Vilar: Electrodeposition of gold thin films from 1-butyl-1-methylpyrrolidinium dicyanamide Au3+ solutions, Thin Solid Films, 519, 6278-6283 (2011).
    [106] E. Billy, E. Chainet, F. Tedjar: Anodic behavior of gold in 1-butyl-3-methylimidazolium methanesulfonate ionic liquid with chloride anion, Electrochimica Acta, 56, 10340-10346 (2011).
    [107] S.-P. Tung, T.-K. Huang, C.-Y. Lee, H.-T. Chiu: Electrochemical growth of gold nanostructures on carbon paper for alkaline direct glucose fuel cell, RSC Advances, 2, 1068 (2012).
    [108] L.Y. Chen, X.Y. Lang, T. Fujita, M.W. Chen: Nanoporous gold for enzyme-free electrochemical glucose sensors, Scripta Materialia, 65, 17-20 (2011).
    [109] B. Ballarin, A. Mignani, E. Scavetta, M. Giorgetti, D. Tonelli, E. Boanini, C. Mousty, V. Prevot: Synthesis route to supported gold nanoparticle layered double hydroxides as efficient catalysts in the electrooxidation of methanol, Langmuir, 28, 15065-15074 (2012).
    [110] Z. Zhang, L. Xin, J. Qi, Z. Wang, W. Li: Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst, Green Chemistry, 14, 2150 (2012).
    [111] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New Yorks (2000).
    [112] A.J. Bard, L.R. Faulkner, Electrochemical Methods :Fundamentals and Applications, John Wiley & Sons, New York (2001).
    [113] M.E. Hyde, C.E. Banks, R.G. Compton: Anodic stripping voltammetry: An AFM study of some problems and limitations, Electroanalysis, 16, 345-354 (2004).
    [114] W.R. Lacourset, D.C. Johnson: Optimization of Waveforms for Pulsed Amperometric Detection of Carbohydrates Based on Pulsed Voltammetry, Anal. Chem., 65, 50-55 (1993).

    下載圖示 校內:2018-07-26公開
    校外:2018-07-26公開
    QR CODE