簡易檢索 / 詳目顯示

研究生: 盧修宇
Lu, Xiu-Yu
論文名稱: 採用多階靜態同步補償器於配電系統電壓不平衡改善之分析
Improvement of Three-phase Voltage Unbalance in Distribution Systems Using a Multilevel Static Synchronous Compensator
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 143
中文關鍵詞: 配電系統電壓不平衡配電變壓器U-V/V-V連接多階靜態同步補償器
外文關鍵詞: Distribution systems, voltage unbalance, distribution transformer, U-V/V-V connection, multilevel static synchronous compensator
相關次數: 點閱:111下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣的配電系統由於三相負載分配的不平衡以及採用兩個單相變壓器繞組的U-V連接或V-V連接供電至負載等因素,導致配電系統三相電壓的不平衡,進而使中性線電流增加導致接地電驛可能跳脫,而三相不平衡的供電也會造成額外的線路損失及降低交流馬達的運轉效率,因此本論文提出採用多階靜態同步補償器來改善配電系統三相電壓不平衡的特性。本論文之系統架構一係以IEEE四節點之測試饋線,利用多階靜態同步補償器改善系統之電壓不平衡,並與一般配電型靜態同步補償器之效能做比較;本論文之系統架構二係以IEEE十三匯流排系統,利用多階靜態同步補償器改善系統之電壓不平衡,並觀察對系統中再生能源所造成的影響。本論文由模擬結果驗證多階靜態同步補償器於改善配電系統三相電壓不平衡的可行性。

    Three-phase voltage unbalance of distribution systems due to unequal loading on three phases and the U-V or V-V winding connection of two single-phase distribution transformers occurs in most utility companies including Taiwan Power Company. Three-phase voltage unbalance can lead to sudden trip of ground relay, extra power losses of distribution lines, efficiency reduction of induction motors, etc. This thesis proposes a multilevel static synchronous compensator (ML-STATCOM) to mitigate three-phase voltage unbalance problems in distribution systems. System configuration 1 of this thesis is based on the IEEE 4-node test feeder with three-phase voltage unbalance while the ML-STATCOM is proposed to improve the system voltage unbalance and compare the effectiveness of a distribution STATCOM (D-STATCOM). System configuration 2 of this thesis is based on the IEEE 13-bus feeder with unequal loading on three phases and the U-V or V-V winding connection of two single-phase distribution transformers while the ML-STATCOM is proposed to reduce three-phase voltage unbalance and the power fluctuations caused by PV/wind renewables in the system. The simulation results show that the employment of the proposed ML-STATCOM can effectively reduce three-phase voltage unbalance of the studied distribution systems.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XVI 符號說明 XXI 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 3 1-3 本論文之貢獻 11 1-4 研究內容概述 12 第二章 三相電壓不平衡之探討 14 2-1 前言 14 2-2 三相電壓不平衡之成因 14 2-3 三相電壓不平衡之定義 15 2-4 三相電壓不平衡管制標準 17 2-5 三相電壓不平衡影響 19 2-6 三相電壓不平衡改善方法 20 第三章 系統數學模型 23 3-1 前言 23 3-2 系統架構 24 3-3 變壓器之模型 28 3-3-1 三台單相變壓器Y-Y連接之模型 28 3-3-2 三台單相變壓器Y-Δ連接之模型 29 3-3-3 三台單相變壓器Δ-Δ連接之模型 30 3-3-4 二台單相變壓器U-V連接之模型 31 3-3-5 二台單相變壓器V-V連接之模型 32 3-4 鼠籠式轉子感應馬達之模型 33 3-5 太陽能陣列之模型 35 3-6 風渦輪機之模型 40 3-7 旋角控制器之模型 42 3-8 風渦輪機與發電機間轉矩之模型 43 3-9 雙饋式感應發電機之模型 44 3-10 電力電子轉換器之模型 46 3-10-1 太陽能陣列之模型 46 3-10-2 雙饋式感應發電機之轉子側轉換器 48 3-10-3 雙饋式感應發電機之電網側轉換器 49 第四章 多階靜態同步補償器於三相不平衡系統的應用 51 4-1 前言 51 4-2 數學模型 51 4-3 正負序分離方法 54 4-4 解耦合電流控制 56 第五章 系統模擬分析 62 5-1 前言 62 5-2 系統架構一之電壓不平衡分析 62 5-2-1 案例一:配電變壓器Tr2繞組為Y-Δ連接之電壓不平衡分析 63 5-2-2 案例二:配電變壓器Tr2繞組為Δ-Δ連接之電壓不平衡分析 73 5-2-3 案例三:配電變壓器Tr2繞組為U-V連接之電壓不平衡分析 83 5-2-4 案例四:配電變壓器Tr2繞組為V-V連接之電壓不平衡分析 88 5-2-5 案例五:負載不平衡之電壓不平衡分析 93 5-3 系統架構二之電壓不平衡分析 98 5-3-1 案例一:負載不平衡之電壓不平衡分析 101 5-3-2 案例二:負載不平衡且改裝變壓器TR1之電壓不平衡分析 109 5-3-3 案例三:負載不平衡且改裝變壓器TR3之電壓不平衡分析 117 5-3-4 案例四:負載不平衡且同時改裝變壓器TR1、TR3之電壓不平衡分析 125 第六章 結論與未來研究方向 134 6-1 結論 134 6-2 未來研究方向 135 參考文獻 138 附錄 142 作者簡介 144

    參考文獻
    [1] A. Yazdani and R. Iravani, “A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions,” IEEE Trans. Power Delivery, vol. 21, no. 3, pp. 1620-1629, Jul. 2006.
    [2] Q. Liu, Y. Tao, X. Liu, Y. Deng, and X. He, “Voltage unbalance and harmonics compensation for islanded microgrid inverters,” IET Power Electronics, vol. 7, no. 5, pp. 1055-1063, May 2014.
    [3] F. M. Shahir, E. Babaei, S. Ranjbar, and S. Torabzad, “New control methods for matrix converter based UPFC under unbalanced load,” in Proc. 2012 IEEE 5th India International Conference on Power Electronics (IICPE), Delhi, India, Dec. 6-8, 2012, pp. 1-6.
    [4] Y.-H. Chan, C.-J. Wu, and S.-C. Wang, “Power quality assessment of specially connected transformers,” in Proc. 9th World Scientific and Engineering Academy and Society (WSEAS), International Conference on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, Apr. 11-13, 2010, pp. 157-161.
    [5] T.-H. Chen, J.-D. Chang, and Y.-L. Chang, “Models of grounded mid-tap open-wye and open-delta connected transformers for rigorous analysis of a distribution system,” IEE Proc. Generation, Transmission, and Distribution, vol. 143, no. 1, pp. 82-88, Jan. 1996.
    [6] T.-H. Chen, C.-H. Yang, and T.-Y. Hsieh, “Case studies of the impact of voltage imbalance on power distribution systems and equipment,” in Proc. 8th World Scientific and Engineering Academy and Society (WSEAS), International Conference on Applied Computer and Applied Computational Science, Genova, Italy, Oct. 17-19, 2009, pp. 171-176.
    [7] P. Liu, J.-J. Deng, Q. Shi, and C.-H. Li, “Research on simulation of V/V connection transformer power quality,” in Proc. 2014 China International Conference on Electricity Distribution (CICED 2014), Shenzhen, China, Sep. 23-26, 2014, pp. 528-532.
    [8] T.-L. Lee, S.-H. Hu, and Y.-H. Chen, “D-STATCOM with positive-sequence admittance and negative-sequence conductance to mitigate voltage fluctuation in high-level penetration of distributed-generation systems,” IEEE Trans. Industrial Electronics, vol. 60, no. 4, pp. 1417-1428, Apr. 2013.
    [9] T. P. Enderle, G. S. da Silva, C. Fischer, R. C. Beltrame, L. Schuch, V. F. Montagner, and C. Rech, “D-STATCOM applied to single-phase distribution networks: Modeling and control,” in Proc. 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, Oct. 25-28, 2012, pp. 321-326.
    [10] B. Mahdad, T. Bouktir, and K. Srairi, “A three-phase power flow modelization: A tool for optimal location and control of FACTS devices in unbalanced power systems,” in Proc. 32nd Annual Conference on IEEE Industrial Electronics, Paris, France, Nov. 6-10, 2006, pp. 2238-2243.
    [11] C. Hochgraf and R. H. Lasseter, “STATCOM controls for operation with unbalanced voltages,” IEEE Trans. Power Delivery, vol. 13, no. 3, pp. 538-544, Apr. 1998.
    [12] A. Balikci and E. Akpinar, “A three-phase four-wire static synchronous compensator with reduced number of switches for unbalanced loads,” IET Power Electronics, vol. 7, no. 6, pp. 1630-1643, Dec. 2014.
    [13] Y. Shi, B. Liu, Y. Shi, and S. Duan, “Individual phase current control based on optimal zero-sequence current separation for a star-connected cascade STATCOM under unbalanced conditions,” IEEE Trans. Power Electronics, vol. 31, no. 3, pp. 2099-2110, Mar. 2016.
    [14] S. H. Hosseini, A. Nazarloo, and E. Babaei, “Application of D-STATCOM to improve distribution system performance with balanced and unbalanced fault conditions,” in Proc. 2010 IEEE Electric Power and Energy Conference (EPEC), Halifax, NS, Canada, Aug. 25-27, 2010, pp. 1-6.
    [15] F.-Z. Peng, J.-S. Lai, J. W. McKeever, and J. V. Coevering, “A multilevel voltage-source inverter with separate DC sources for static var generation,” IEEE Trans. Industry Applications, vol. 32, no. 5, pp. 1130-1138, Sep./Oct. 1996.
    [16] L. Xu and Y. Wang, “Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions,” IEEE Trans. Power Systems, vol. 22, no. 1, pp. 314-323, Feb. 2007.
    [17] O. G. Bellmunt, A. J. Ferre, A. Sumper, and J. B. Jane, “Ride-through control of a doubly fed induction generator under unbalanced voltage sags,” IEEE Trans. Energy Conversion, vol. 23. no. 4, pp. 1036-1045, Dec. 2008.
    [18] E. N. Azadani, C. A. Cañizares, D. E. Olivares, and K. Bhattacharya, “Stability analysis of unbalanced distribution system with synchronous machine and DFIG based distributed generators,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2326-2338, Sep. 2014.
    [19] S. Seman, J. Niiranen, and A. Arkkio, “Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance,” IEEE Trans. Power Systems, vol. 21, no. 4, pp. 1782-1789, Nov. 2006.
    [20] R. Pena, R. Cardenas, E. Escobar, J. Clare, and P. Wheeler, “Control system for unbalanced operation of stand-alone DFIGs,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 544-545, Jun. 2007.
    [21] C.-Y. Lee, “Effects of unbalanced voltage on the operation performance of a three-phase induction motor,” IEEE Trans. Energy Conversion, vol. 14, no. 2, pp. 202-208, Jun. 1999.
    [22] 江榮城,電力品質實務(一),台北市:全華科技圖書公司,民國八十九年五月。
    [23] 王耀諄,電力品質,第二版,台北市:高立圖書公司,民國九十八年八月。
    [24] 魏炫浚,三相感應機於不同操作情況下諧波阻抗之研究,國立雲林科技大學電機工程學系碩士論文,民國九十六年六月。
    [25] 陳在相、謝廷彥、廖日能、吳承恩,「二次配電系統之配電變壓器組結線方式對再生能源最大併網量之影響」,中華民國第三十五屆電力工程研討會,正修科技大學,高雄市,台灣,民國一百零三年十二月五、六日。
    [26] S. J. Chapman, Electric Machinery Fundamentals, 4th ed., New York, NY, USA: McGraw-Hill, 2004.
    [27] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 3rd ed., New York, NY, USA: John Wiley & Sons, 2013.
    [28] 黃維澤、姚凱超、黃育新、邱嘉宏,「95 kW太陽光電系統併入二次配電網之系統衝擊分析」,中華民國第三十四屆電力工程研討會,國立勤益科技大學,台中市,台灣,民國一百零二年十二月六、七日。
    [29] Implement PV array modules, [Online]. Available: http://www.mathworks.com/help/physmod/sps/powersys/ref/pvarray.html, retrieved date: Mar. 16, 2016.
    [30] 余定中、林雨澄、張孝澤,「太陽能發電系統最大功率追蹤演算法之比較」,中華民國第三十一屆電力工程研討會,崑山科技大學,台南,台灣,民國一百年十二月三、四日。
    [31] U. S. Patel, M. D. Sahu, and D. Tirkey, “Maximum power point tracking using perturb & observe algorithm and compare with another algorithm,” International Journal of Digital Application & Contemporary Research (IJDACR), vol. 2, no. 2, pp. 1-8, Sep. 2013.
    [32] 黃麗娟,太陽能電池分佈式最大功率點追蹤之設計與製作,中原大學電機工程學系碩士論文,民國一百年七月。
    [33] S. Heier, Grid Integration of Wind Energy Conversion Systems, New York, NY, USA: John Wiley & Sons, 1998.
    [34] Y. H. A. Rahim and A. M. L. Al-Sabbagh, “Controlled power transfer from wind driven reluctance generator,” IEEE Trans. Energy Conversion, vol. 12, no. 4, pp. 275-281, Dec. 1997.
    [35] A. O. Ibrahim, T. H. Nguyen, D. C. Lee, and S. C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.
    [36] N. N. V. S. Babu and B. G. Fernandes, “Cascaded two-level inverter-based multilevel STATCOM for high-power applications,” IEEE Trans. Power Delivery, vol. 29, no. 3, pp. 993-1001, Jun. 2014.
    [37] K. K. Mohapatra, K. Gopakumar, V. T. Somasekhar, and L. Umanand, “A harmonic elimination and suppression scheme for an open-end winding induction motor drive,” IEEE Trans. Industrial Electronics, vol. 50, no. 6, pp. 1187-1198, Dec. 2003.
    [38] Y. Xu and F. Li, “Adaptive PI control of STATCOM for voltage regulation,” IEEE Trans. Power Delivery, vol. 29, no. 3, pp. 1002-1011, Jun. 2014.
    [39] A. Yazdani and R. Iravani, Voltage-Sourced Converters in Power Systems, New York, NY, USA: John Wiley & Sons, 2010.
    [40] 曾聖然,考量電力系統電壓不平衡與驟降時靜態同步補償器之雛型設計與實作,國立清華大學電機工程學系碩士論文,民國九十九年七月。
    [41] 劉威盛,配電型靜態同步補償器應用於變壓器U-V/V-V連接之電壓不平衡改善,國立成功大學電機工程學系碩士論文,民國一百零五年七月。
    [42] 劉立士,三相感應電動機在不平衡三相電源下之分析,國立成功大學電機工程學系碩士論文,民國八十八年六月。

    無法下載圖示 校內:2021-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE