| 研究生: |
王柏翰 Wang, Po-Han |
|---|---|
| 論文名稱: |
過熱固溶處理對2218鋁-銅合金時效材
顯微組織與室溫拉伸性質影響之探討 Effect of Overheated Solution Treatment on Microstructure and Room Temperature Tensile Properties of 2218 Peak-aged Al-Cu Alloy |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | Al-Cu合金 、過熱固溶處理 、拉伸性質 |
| 外文關鍵詞: | Al-Cu alloy, overheated solution treatment, tensile property |
| 相關次數: | 點閱:58 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Al-Cu系合金為典型的熱處理型鋁合金,常被使用於需要高強度的結構材料及航空工業,應用方面Al-Cu系合金延伸率至少須達10%以上。本實驗利用過熱固溶處理來控制2218(Al-4Cu)合金的拉伸延性及強度;過熱固溶處理的第一階段先施以高於傳統固溶化(T4)溫度,藉由改變此階段的溫度及時間,來控制2218合金中金屬間化合物的形貌,並造成熔融產生孔洞,使其延性提升,其條件為490°C ~560°C持溫5小時及535°C 持溫1~15小時;接著第二階段施以峰值時效熱處理,使其強度獲得提升。對經過熱固溶處理後的2218合金進行室溫拉伸試驗,並針對微觀組織變化和裂紋傳播機制做進一步的分析。
根據經490°C ~560°C持溫5小時過熱固溶處理的實驗結果推測,2218合金經550°C以上的過熱固溶處理後,由於產生過大的熔融孔洞,導致其拉伸強度相對於其他過熱固溶溫度的拉伸強度開始有顯著的下降。當過熱固溶溫度低於535°C時,Al7Cu4Ni分佈密集進而導致應力集中,使裂紋容易串聯傳播,導致延性下降;535°C時,由於Al7Cu4Ni因粗大化而使顆粒總數減少,顆粒間的平均距離增加並沿著晶胞界分佈,增加了裂紋傳播距離,此外,孔洞的產生可以緩和裂紋尖端的應力集中進而抑制裂紋的成長,延性因此提升;溫度高於535°C時,Al7Cu4Ni於晶胞界處呈連續性分佈,大量熔融產生巨大的孔洞,使得裂紋的傳播發生沿晶破壞使延性明顯下降。
2218合金在535°C持溫1~15小時,隨著持溫時間的增加,拉伸強度並不會產生顯著的變化。由於Ostwald Ripening的效應使Al7Cu4Ni逐漸粗大化而顆粒數減少,顆粒間之平均距離增加導致裂紋傳播距離增加,使得延性上升;當持溫5小時,由於適量大小的熔融孔洞緩和裂紋尖端的應力集中,使延性獲得最佳的提升;超過5小時的持溫時間,仍然是由粗大的Al7Cu4Ni主導裂紋傳播,少數過大的熔融孔洞並不會導致延性明顯下降。
Al-Cu alloys are heat treatable Al alloys and are often applied as the structural component and in the aircraft industries. With regard to the structural component, the tensile ductility of Al-Cu alloy must be more than 10%. Overheated solution treatment were carried out in this study. At the first stage, 2218 alloy was subjected in the overheated solution treatment to modify the intermetallic compounds and to induce voids to the matrix such that the tensile ductility of 2218 alloy could be improved. The selected temperatures of overheated solution treatment were higher than the solution treatment temperature (T4). Following the first stage, peak aging was conducted to the 2218 alloy for increasing the tensile stress of 2218 alloy. After overheated solution treatment ranging from 490°C to 560°C and peak aging, specimens were tested in uniaxial tensile tests. The tensile properties of specimens after overheated solution treatment which is 535°C for 1 to 15 hours were also discussed in this study. During tensile deformation, the microstructure evolution was observed to realize the mechanism of crack growth in 2218 alloy.
The specimen treated with 550°C overheated solution treatment had an obvious decrease in the tensile stress in comparison with specimens treated at other temperatures, which could be attributed to the coarsening of induced voids. When overheated solution treatment at less than 535°C, the clustering of Al7Cu4Ni particles made the connection between cracks more easy, which caused the decrease in tensile elongation of 2218 alloy. In 2218 alloy treated at 535°C, Al7Cu4Ni particles distributed on the cell boundaries and the amount of these particles decreased due to particles coarsening; therefore the average distance between particles increased. The distance of crack propagation was raised with increasing distance between particles. Besides, the stress concentration at the tip of the crack was released when the crack meet the void, which could inhibit the growth of the crack and raise the tensile ductility of 2218 alloy. With overheated solution treatment at more than 535°C, Al7Cu4Ni particles distributed along cell boundaries and the melting of second phases induced large voids in 2218 alloy, which caused intergranular fracturing, and therefore the tensile ductility of 2218 alloy declined.
After peak aging, the tensile stress of 2218 alloy remained with increasing the duration time of overheated solution treatment at 535°C. Al7Cu4Ni particles coarsened with increasing duration time as a result of Ostwald ripening, and subsequently the amount of particles was also reduced. With increasing the distance between particles, it was inhibited that cracks propagated from one particle to another one, and this phenomenon could raise the tensile ductility of 2218 alloy. With overheated solution treatment at 535°C for 5 hours, the morphology Al7Cu4Ni particles and distribution of void in 2218 alloy was suitable for tensile ductility improvement.
[1] 陳思達,『摩擦攪拌銲接對Al-Cu系2218合金微觀組織變化之效應』,國立成功大學材料科學與工程學研究所碩士論文,2004,第27-32頁。
[2] J. H. Sokolowski, X. C. Sun, G. Byczynski, D. O. Northwood, D. E. Penrod, R. Thomas and A. Esseltine, "The removal of copper-phase segregation and the subsequent improvement in mechanical properties of cast 319 aluminium alloys by a two-stage solution heat treatment", Journal of Materials Processing Technology, 53(1–2), 1995, pp. 385-392.
[3] İ. Özbek, "A study on the re-solution heat treatment of AA 2618 aluminum alloy", Materials Characterization, 58(3), 2007, pp. 312-317.
[4] H. D. Merchant, T. Z. Kattamis and G. Scharf, "Homogenization of aluminum alloys: proceedings of the homogenization and annealing of aluminum and copper alloys", The Metallurgical Society Publication, 1987, pp. 1-53.
[5] L. Narayanan, F. Samuel and J. Gruzleski, "Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy", Metallurgical and Materials Transactions A, 25(8), 1994, pp. 1761-1773.
[6] J. H. Sokolowski, M. B. Djurdjevic, C. A. Kierkus and D. O. Northwood, "Improvement of 319 aluminum alloy casting durability by high temperature solution treatment", Journal of Materials Processing Technology, 109(1–2), 2001, pp. 174-180.
[7] C. J. Sun, P. Saffari, K. Sadeghipour and G. Baran, "Effects of particle arrangement on stress concentrations in composites", Materials Science and Engineering: A, 405(1–2), 2005, pp. 287-295.
[8] M. Huang and Z. Li, "Size effects on stress concentration induced by a prolate ellipsoidal particle and void nucleation mechanism", International Journal of Plasticity, 21(8), 2005, pp. 1568-1590.
[9] 劉一華,『應力集中與失效分析』,理化檢測與質量控制學術交流會會議論文,2006,分類號:TB301。
[10] N. Terao, "Beneficial influence of copper and manganese alloying elements on the mechanical properties of metallic composite materials based on the eutectic Al-5.7% Ni alloy", Journal of Materials Science, 20(11), 1985, pp. 4021-4026.
[11] M. Farag and M. Flemings, "Structure and strength of Al, Cu-Al3Ni directionally solidified composites", Metallurgical and Materials Transactions A, 6(5), 1975, pp. 1009-1015.
[12] "Aluminum mill products", American Society for Metals, vol. 2, 1990, pp. 44-62.
[13] "Corrosion: fundamentals, testing and protection", American Society for Metals, vol. 13A, 2003, pp. 689-691.
[14] 賴耿陽譯著,『鑄造技術用書 5-非鐵合金鑄物』,復華出版社,1977,第115-116頁。
[15] J. E. Hatch, "Aluminum: properties and physical metallurgy", American Society for Metals, 1984, pp. 200-241.
[16] Y. A. Bagaryatskii, "Mechanism of artificial aging of Al-Cu-Mg alloy", Akad(SSSR) 87(Dokl), 1952, pp. 397-400.
[17] "Properties of Wrought Aluminum and Aluminum Alloys", American Society for Metals, vol. 2, 1990, pp. 79-85.
[18] V. S. Zolotorevskiĭ, N. A. Belov and M. V. Glazoff, "Casting aluminum alloys", Elsevier Science, 2007, pp. 34, 35.
[19] N. A. Belov, D. G. Eskin and A. A. Aksenov, "Multicomponent phase diagrams: applications for commercial aluminum alloys", Elsevier, 2005, pp. 227-228.
[20] 李言榮、惲正中編著,『材料物理學概論』,五南圖書出版公司,2003,第295-298頁。
[21] 学校法人関西学院, 金子忠昭 and 西谷滋人, "単結晶炭化ケイ素の液相エピタキシャル成長方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板", 公開番号:2008230946, 2008.
[22] B. Noble and S. E. Bray, "Coarsening of the δ´ phase in aluminium-lithium alloys", Philosophical Magazine A, 79(4), 1999, pp. 859-872.
[23] D. A. Porter and K. E. Easterling, "Phase transformations in metals and alloys 2nd ed.", Chapman & Hall, 1992, pp. 314-317.
[24] R. Chang, W. L. Morris and O. Buck, "Fatigue crack nucleation at intermetallic particles in alloys: a dislocation pile-up model", Scripta Metallurgica, 13(3), 1979, pp. 191-194.
[25] N. Chawla and Y. L. Shen, "Mechanical behavior of particle reinforced metal matrix composites", Advanced Engineering Materials, 3(6), 2001, pp. 357-370.
[26] D. J. Lloyd, "Particle reinforced aluminium and magnesium matrix composites", International Materials Reviews, 39(1), 1994, pp. 1-23.
[27] D. B. Miracle, "Metal matrix composites – From science to technological significance", Composites Science and Technology, 65(15–16), 2005, pp. 2526-2540.
[28] L. Gelimson, "Theory of maximum stress concentration factors at circular holes", The “Collegium” All World Academy of Sciences Publishers, 2005.
[29] P. Dixit, "Module3: design for strength", Department of Mechanical Engineering of Indian Institute of Technology Course.
[30] G. Kirsch, "Die theorie der elastizität und die bedürfnisse der festigkeitslehre", Springer, 1898, pp. 797-807.
[31] A. I. Lurʹe and A. Belyaev, "Theory of elasticity", Springer, 2005, pp. 532,604.
[32] K. P. Young, C. P. Kyonka and J. A. Courtoris, "Fine grained metal composition", United States Patent 4415374, 1983.
[33] 梁達嵐,『改良式SIMA法製備鎂合金半固態成形胚料之研究』,國立交通大學機械工程研究所碩士論文,2007,第9-20頁。
[34] 陳思達,『純鋁及鋁銅合金拉伸性質之摩擦攪拌效應及Hollomon方程式適用性檢討』,國立成功大學材料科學與工程學研究所博士論文,2011,第 70, 88頁。
[35] T. Shanmugasundaram, M. Heilmaier, B. S. Murty and V. S. Sarma, "On the Hall–Petch relationship in a nanostructured Al–Cu alloy", Materials Science and Engineering: A, 527(29–30), 2010, pp. 7821-7825.
[36] W. He, S. D. Bhole and D. Chen, "Modeling the dependence of strength on grain sizes in nanocrystalline materials", Science and Technology of Advanced Materials, 9(1), 2008, pp. 015003.
[37] R. Abbaschian, L. Abbaschian and R. E. Reed-Hill, "Physical metallurgy principles 3rd ed.", Cengage Learning, 2008, pp. 16.20-16.21.
[38] M. W. Harris, "A new analytical model for stress concentration around hard spherical particles in metal matrix composites", Texas A&M University, 2007, pp. 12-14.
[39] R. Paskaramoorthy and S. A. Meguid, "On the dynamic behaviour of porous materials", International Journal of Solids and Structures, 37(16), 2000, pp. 2341-2358.
[40] A. R. Mohamed, "On blunting the crack tip through hole-drilling", Alexandria Engineering Journal, 42(3), 2003, pp. 347-356.