簡易檢索 / 詳目顯示

研究生: 陳卓凡
Chen, Cho-Fan
論文名稱: 管線式類比至數位轉換器之內建自我診斷電路
Built-In Self Diagnosis of Pipelined A/D Converters
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 69
中文關鍵詞: 管線式類比至數位轉換器診斷電路
外文關鍵詞: pipelined, A/D converters, diagnosis circuits
相關次數: 點閱:130下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文的主要目的是設計一個每秒取樣50百萬次8位元的管線式類比至數位轉換器及其內建自我診斷電路。此管線式類比至數位轉換器的操作電壓為3.3V,且此管線式類比至數位轉換器的每一管線式級(pipelined stage)的輸出電壓為1.15 伏特至 2.15 伏特。在此內建式自我診斷電路中,我們設計一個待測級保持器(Stage-Under-Test holder)去保持要測的管線式級的輸出電壓,然後將此電壓經過電壓控制震盪器(VCO)和數位電路,將電壓轉成數位碼。我們使用此數位碼來表示每一管線式級的輸出電壓,所以,可以利用這些數位電路去診斷管線式類比至數位轉換器內部電路的錯誤。為了驗證這個架構,我們注入電容不匹配的錯誤到待測級中來證明診斷架構的功能。
    在這個診斷電路中,除了VCO,我們使用的電路都屬於數位電路,一般來講,高解析度的類比電路在低供應電壓下很難設計,所提的診斷電路大多是以數位電路完成,所以,為了達到高解析度會比用類比電路容易。在此診斷架構中,可消除待測級保持器所產生的偏差,並且幾乎不會影響到該類比至數位轉換器的效能。我們所有的電路設計與模擬,採用台積電 0.35微米 2P4M的製程檔案。

    The main purpose of this thesis focuses on the design and diagnosis of a 50 MHz 8-bit pipelined ADC. The supply voltage of this ADC is 3.3 V and the output voltage range of each pipelined stage is from 1.15 V to 2.15 V. In the proposed Built-In Self Diagnosis circuit, we design a Stage-Under-Test Holder (SUT-Holder) to hold the output voltage of the selected pipelined stage. Then, the analog voltage of SUT is transformed into digital code by a voltage controlled oscillator (VCO) and a counter. By using the obtained digital codes to represent corresponding voltages of the pipelined stage, we can use simple digital circuits to diagnose errors in the pipelined stage. To verify this architecture, we inject faults of capacitor mismatch into SUTs to demonstrate the effectiveness of the proposed diagnosis scheme.
    Except the VCO, all the employed building blocks of the diagnosis scheme are digital circuits in this work. Generally, design of analog circuits with high resolution is very difficult under low supply voltage. The proposed diagnosis circuit is mostly accomplished with digital circuits. So, it is much easier to achieve higher resolution than using pure analog circuits. The offsets induced by the SUT-Holder can be cancelled in the proposed diagnosis circuit. Also, the performance degradation of the ADC caused by the added circuits is very small. All circuit designs and simulations are based on TSMC 0.35m 2P4M process model.

    Abstract..........II Acknowledgement..........IV Table of Contents..........V List of Tables..........IX List of Figures..........X Chapter 1 Introduction..........1 1.1 Motivation..........1 1.2 Applications of Pipelined ADCs..........3 1.3 Organization of Thesis..........5 Chapter 2 The Basic Concept of Pipelined A/D Converters and the BIST for A/D Converters..........7 2.1 Introduction..........7 2.2 Parameters in ADCs..........7 2.2.1 Resolution..........7 2.2.2 INL..........8 2.2.3 DNL..........8 2.2.4 Missing Code..........8 2.2.5 Dynamic Range..........8 2.2.6 SNDR..........8 2.2.7 SFDR..........9 2.2.8 SNR..........9 2.3 Pipelined ADC Building Blocks..........10 2.4 Pipelined Stage Accuracy Requirements..........13 2.5 Selecting Stage Resolution..........15 2.6 Error Sources in Pipelined Stages..........17 2.6.1 Thermal Noise..........17 2.6.2 Comparator Offsets..........18 2.6.3 Non-ideal DAC Reference Level..........19 2.6.4 Stage Gain Error..........19 2.7 Digital Error Correction Technique..........20 2.8 Background to BIST..........21 2.8.1 BIST Implementations..........21 2.8.2 The Goal of BIST..........22 2.9 Testing Methods for ADCs..........23 2.9.1 Histogram Test Technique..........23 2.9.2 Self Calibrated ADC BIST..........24 2.9.3 MDAC and Stage Testing for Pipelined ADCs..........24 2.9.4 Two Comparators Testing of Pipelined ADCs..........25 2.10 Summary..........26 Chapter 3 Design of a 50MHz 8-Bit Pipelined A/D Converter..........27 3.1 Introduction..........27 3.2 1.5-bit / stage System Architecture of Pipelined ADC..........27 3.3 Circuit Design and Simulation.......... 29 3.3.1 Required OPAMP Spec. in This Pipelined A/D Converter..........29 3.3.2 OPAMP..........30 3.3.3 Component Blocks in the Pipelined ADC..........34 3.3.3.1 S/H..........34 3.3.3.2 Sub-ADC..........35 3.3.3.3 MDAC..........38 3.3.3.4 Clock Generator..........39 3.3.3.5 Synchronous Cell..........40 3.3.3.6 Digital Error Correction..........40 3.4 Summary..........40 Chapter 4 Design of Diagnosis Circuits for a Pipelined A/D Converter..........43 4.1 Introduction..........43 4.2 VCO-Based Diagnosis..........44 4.2.1 VCO-Based Diagnosis Method..........44 4.2.2 VCO..........45 4.3 Blocks and Methodology of VCO Based Diagnosis..........47 4.3.1 Methodology..........47 4.3.2 SUT-Holder..........51 4.3.3 Clock Generation in VCO Based Diagnosis..........52 4.4 Diagnosis Architecture..........53 4.4.1 Whole Pipelined ADC Diagnosis..........53 4.4.2 Sub-ADC Testing..........55 4.5 Diagnosis Simulation Result..........56 4.5.1 Single Stage..........57 4.5.2 Whole Pipelined ADC..........58 4.5.3 Performance Simulation of DUT in the Diagnosis Architecture..........61 4.6 Summary..........62 Chapter 5 Conclusions and Future Work..........63 5.1 Conclusions..........63 5.2 Future Work..........64 References..........65

    [1] C. H. Huang, K. J. Lee, and S. J. Chang, “A low-cost diagnosis methodology for pipelined A/D converters,” in Proc. IEEE Asian Test Symp., Nov. 2004, pp.296-301.
    [2] C. H. Huang, “Design and diagnosis of high speed pipelined A/D converters,” Master Thesis, National Cheng Kung University, 2004.
    [3] M. L. Bushnell, V. D. Agrawal, Essential of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits. Norwell, MA: Kluwer Academic, 2000.
    [4] S. H. Lewis, “Optimizing the stage resolution in pipelined, multistage, analog-to-digital converter for video-rate applications,” IEEE Trans. Circuits Syst. II, vol.39, pp.516-523, Aug. 1992.
    [5] J. F. Lin, “A high speed pipelined A/D converter using modified time-shifted CDS technique,” Master Thesis, National Cheng Kung University, 2005.
    [6] G. W. Cheng, “A 1-V, 10-bit CMOS pipelined analog-to-digital converter,” Master Thesis, National Taiwan University, 2002.
    [7] R. J. Baker, H W. Li, and D. E. Boyce, CMOS Circuit Design, Layout And Simulation, New York: IEEE Press, 1998.
    [8] R. J. Baker, CMOS Mixed-Signal Circuit Design, New York: IEEE Press, 1998.
    [9] G. Chien, “High-speed, low-power, low-voltage pipelined analog-to-digital converter,” Ph.D. dissertation, University of California, Berkeley 1996.
    [10] T. Cho, “Low-power, low-voltage analog-to-digital conversion technique using pipeline architectures,” Ph.D. dissertation, University of California, Berkeley 1995.
    [11] M. Burns and G. Roberts, An Introduction to Mixed-Signal IC Test and Measurement, New York: Oxford, 2001.
    [12] F. Azais, S. Bernard, Y. Bertrand, and M. Renovell, “A low-cost BIST architecture for linear histogram testing of ADCs,” J. Electron. Testing: Theory and Applicat., vol.17, pp.139-147, Apr. 2001.
    [13] H. K. Chen, C. H. Wang, and C. C. Su, “A self calibrated ADC BIST methodology,” in Proc. IEEE VLSI Test Symp., Apr. 2002, pp.117-122.
    [14] E. J. Peralias, A. Rueda, and J. L Huertas, “CMOS pipelined A/D converters with concurrent error detection capability,” in Proc. Int. Conf. Electron. Circuits and Syst., Sep.1998, pp.437-440.
    [15] E. J. Peralias, A. Rueda, and J. L. Huertas, “Structural testing of pipelined analog to digital converters,” in Proc. IEEE Int Symp. Circuits and Syst., May 2001, pp.436-439.
    [16] E. J. Peralias, A. Rueda, and J. L. Huertas, “A DFT technique for analog-to-digital converters with digital correction,” in Proc. IEEE VLSI Test Symp., Apr. 1997, pp.302-307.
    [17] E. J. Peralias, G. Huertas, A. Rueda, and J. L. Huertas, “Self-testable pipelined ADC with low hardware overhead,” in Proc. IEEE VLSI Test Symp., Apr. 2001, pp.272-277.
    [18] M. Ehsanian, B. Kaminska, and K. Arabi, “A new digital test approach for analog-to-digital converters testing,” in Proc. IEEE VLSI Test Symp., Apr. 1996, pp.60-65.
    [19] S. Khaled, B. Kaminska, B. Courtois, and M. Lubaszewski “Frequency-based BIST for analog circuit testing,” in Proc. IEEE VLSI Test Symp. , Apr. 1995, pp.54-59.
    [20] D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York: Wiley, 1997.
    [21] P. R. Gray, P. J. Hurst, S. H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, New York: Wiley, 2001.
    [22] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, 2001.
    [23] N. H. E. Weste and D. Harris, CMOS VLSI Design, Reading, MA: Addison-Wesley, 2005.
    [24] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuit Design, Eaglewood Cliffs, NJ: Printice Hall, 2003.
    [25] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design, New York: McGraw-Hill, 2000.
    [26] A. K. Lu, G. W. Roberts, and D. A. Johns, “A high-quality analog oscillator using over-sampling D/A conversion techniques,” IEEE Trans. Circuits Syst. II, vol. 41, pp.437-444, July 1994.
    [27] B. R. Veillette and G. W. Roberts, “High frequency sinusoidal generation using delta-sigma modulation techniques,” in Proc. IEEE Int. Symp. Circuits and Syst., May 1995, pp.637-640
    [28] B. R. Veillette and G. W. Roberts, “FM signal generation using delta-sigma oscillators,” in Proc. IEEE Int. Symp. Circuits and Syst., May 1996, pp.1-4,
    [29] B. R. Veillette and G. W. Roberts, “Amplitude modulated signal generation using a third-order delta-sigma oscillator,” in Proc. IEEE Int. Symp. Circuits and Syst., June 1997, pp.397-400.

    下載圖示 校內:2009-02-01公開
    校外:2010-02-01公開
    QR CODE