簡易檢索 / 詳目顯示

研究生: 簡郁華
Chien, Yu-Hua
論文名稱: Zrx(Zn1/3Nb2/3)1-xTiO4介電陶瓷之微波特性研究及其應用
Microwave Dielectric Properties and Applications of Zrx(Zn1/3Nb2/3)1-xTiO4 Ceremics
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 83
中文關鍵詞: 微波介電陶瓷
外文關鍵詞: microwave, dielectric, Ceremics
相關次數: 點閱:59下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文內將討論Zrx(Zn1/3Nb2/3)1-xTiO4介電陶瓷材料之微波介電特性,其中X之值由0.1~0.4。實驗結果顯示,Zr0.3(Zn1/3Nb2/3)0.7TiO4(x=0.3)在1170℃燒結三小時,可得最佳之介電特性εr~51,Q×f~26600(6GHz),τf~70(ppm/oC)。另外在Zr0.3(Zn1/3Nb2/3)0.7TiO4中分別添加不同燒結促進劑CuO、 B2O3,探討產生的液相對其燒結溫度及其微波特性的影響,當添加2wt%的CuO可有效降低燒結溫度到960℃,此時可得介電特性:εr~49.6,Q×f~16500(6.3GHz),τf~55(ppm/oC)。

      此外,本論文以FR4、氧化鋁、La(Mg1/2Ti1/2)O3為基板,利用DBR設計一個帶通濾波器,中心頻率為1.8GHz,並比較模擬跟實作差異。

     The microwave dielectric properties of Zrx(Zn1/3Nb2/3)1-xTiO4 (X=0.1~0.4) dielectric ceramics materials are discussed in this paper. The experiment results show that Zr0.3(Zn1/3Nb2/3)0.7TiO4(x=0.3) has the best properties with sintering temperature at 1170 oC , the dielectric properties are εr ~ 51,Q×f ~ 26600(6 GHz). τf ~ 70 (ppm/oC). By adding different sintering aids, B2O3 and CuO respectively, the existence effects of liquid phase can be researched for the microwave properties of Zr0.3(Zn1/3Nb2/3)0.7TiO4 ceramics. With 2wt% CuO additions, Zr0.3(Zn1/3Nb2/3)0.7TiO4 ceramics can be efficiently reduced sintering temperature from 1170 oC to 960 oC, the dielectric properties are εr ~ 49.6, Q×f ~ 16500(6.3 GHz) and τf ~ 55( ppm/oC).

     In addition, bandpass filters by using DBR on FR4, Al2O3, Zr0.3(Zn1/3Nb2/3)0.7TiO4 substrates have been designed. The center frequency is 1.8GHz. The difference between the simulation and the actual measurement are also discussed.

    目錄 第一章 緒論  ……………………………………………………………………1 1-1 前言 ………………………………………………………………1 1-2 研究目的 …………………………………………………………1 第二章 介電材料原理 …………………………………………………2 2-1 介電材料的微波電性需求 ………………………………………2 2-2 介電理論 …………………………………………………………2 2-3 介電共振器原理 …………………………………………………6 2-3-1 馬克思威爾方程式之推導 ………………………………………7 2-4 燒結理論 …………………………………………………………9 2-4-1 液相燒結 …………………………………………………………9 第三章 微波濾波器電路原理…………………………………………..11 3-1 微波濾波器簡介 ………………………………………………...11 3-2 微帶線原理 ……………………………………………………….12 3-2-1 微帶傳輸線介紹 ……………………………………...…………12 3-2-2 微帶線傳輸組態 …………………….…………………………..12 3-2-3 微帶線各項參數公式計算 ………………………….…………..13 3-2-4 微帶線各項考量 ………………………………………….……..15 3-3 濾波器介紹 ………………………………….…………………..18 第四章 實驗程序  ……………………………………………………...22 4-1 微波介電材料的製備 …………………………………………...22 4-1-1 Zrx(Zn1/3Nb2/3)1-xTiO4(x=0.1~0.4)陶瓷DR製程 ..….……...22 4-1-2 Zr0.3(Zn1/3Nb2/3)0.7TiO4添加燒結促進劑之製程 ……….……...22 4-2 微波特性的量測與特性分析 ……….…………………………...23 4-2-1 微波特性之量測 ………………………………………………..23 4-2-2 X-Ray分析(XRD) …….……………………………………...24 4-2-3 掃瞄式電子顯微鏡(SEM)分析 ……………………………..24 4-2-4 密度之量測 ……………………………………………………..24 4-3 濾波器的製作與量測 …………………………………………...25 4-3-1 濾波器的規格 …………………………………………………...25 4-3-2 濾波器的設計 …………………………………………………...25 4-3-3 濾波器的實作 …………………………………………………...25 4-3-4 濾波器特性量測 ………………………………………………...26 第五章 實驗結果與討論  ………………………………………………………...27 5-1 Zrx(Zn1/3Nb2/3)1-xTiO4陶瓷介電特性探討 …………………….27 5-2 添加燒結促進劑對Zr0.3(Zn1/3Nb2/3)0.7TiO4之影響 ……….….28 5-2-1 添加燒結促進劑CuO ………………….……………………….29 5-2-2 添加燒結促進劑B2O3 …………………………………….…….30 5-3 濾波器特性探討 ………………………………………………....31 5-3-1 FR4基板特性探討 …….………………………………….…….32 5-3-2 Al2O3基板特性探討 …………………….………….…………....33 5-3-3 Zr0.3(Zn1/3Nb2/3)0.7TiO4基板特性探討 …………….…………....34 第六章 結論與未來展望  .…………………………….…………….………..36 參考文獻  ………………………………………………………………38

    參考文獻
    [1] W. S. Kim, J. H. Kim, J. H. Kim, K. H. Hur, and J. Y. Lee, “Microwave Dielectric Properties of the ZrO2-ZnO-Ta2O5-TiO2 Systems,” Materials Chemistry and Physics, vol.79, pp.204-207, 2003.
    [2] C. Quendo, E. Rius and C. Person, “Narrow Bandpass Filters Using Dual-Behavior Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no.3, pp. 734-743, 2003.
    [3] C. Quendo, E. Rius and C. Person, “Narrow Bandpass Filters Using Dual-Behavior Resonators Based on Stepped-Impedance Stubs and Different-Length Stubs,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no.3, pp. 1034-1044, 2004.
    [4] 邱碧秀,電子陶瓷材料,徐氏基金會出版,中華民國,1997。
    [5] G.. Burns, Solid state physics., Orlando: Academic Press, 1985, p. 461.
    [6] K. Wankino, H. Murata, and H. Tamura, “Far infrared reflection spectra of Ba(Zn,Ta)O3-BaZrO3 dielectric resonator material,” J. Am. Ceram. Soc., vol. 69, pp. 34-37, Jan. 1986.
    [7] W. E. Courtney, “Analysis and evaluation of a method of measuring the com-plex per-mittivity and permeability of microwave insulators,” IEEE. Trans. Mi-crowave Theory Tech., vol. MTT-18, pp. 476-485, Aug. 1970.
    [8] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998, ch.1.
    [9] D. Kajfez, “Computed model field distribution for isolated dielectric resonator-s,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
    [10] D. Kajfez, “Basic principle give understanding of dielectric waveguides and r-esonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
    [11] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House, 1989.
    [12] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Press, pp. 189-202, 1979.
    [13] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch.
    [14] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
    [15] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase s-intering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
    [16] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
    [17] R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
    [18] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe allo-ys,” J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
    [19] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
    [20] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
    [21] E. O. Hammerstard, in Proceedings of the european microwave conference., pp. 268-272, 1975.
    [22] E. J. Denlinger, “Losses of microstrip lines,” IEEE. Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun. 1980
    [23] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
    [24] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
    [25] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Te- ch., vol. MTT-20, pp. 573-578, Sep. 1980.
    [26] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
    [27] B. W. Hakki, and P. D. Coleman, “A dielectric resonator method of measure-ng inductive capacities in the millimeter range,” IEEE. Trans. Microwave Theory Tech., vol. MTT-8, pp. 402-410, 1960
    [28] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of lo-w-loss materials by dielectric rod resonator method,” IEEE Trans. Micr- owave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
    [29] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. Microwave Theory Tech., vol. MTT-28, pp. 1077-1085, 1980
    [30] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators,” IEEE MTT-S Symposium Dig., pp. 473-476, 1985.
    [31] Y. K. Kim, and H. M. Jang “Raman line-ahape analysis of nano-structural evolution in cation-ordered ZrTiO4-based dielectrics,” Solid State communications, vol. 127, 99. 433-437, 2003

    下載圖示 校內:2006-07-04公開
    校外:2006-07-04公開
    QR CODE