| 研究生: |
簡郁華 Chien, Yu-Hua |
|---|---|
| 論文名稱: |
Zrx(Zn1/3Nb2/3)1-xTiO4介電陶瓷之微波特性研究及其應用 Microwave Dielectric Properties and Applications of Zrx(Zn1/3Nb2/3)1-xTiO4 Ceremics |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 微波 、介電 、陶瓷 |
| 外文關鍵詞: | microwave, dielectric, Ceremics |
| 相關次數: | 點閱:59 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文內將討論Zrx(Zn1/3Nb2/3)1-xTiO4介電陶瓷材料之微波介電特性,其中X之值由0.1~0.4。實驗結果顯示,Zr0.3(Zn1/3Nb2/3)0.7TiO4(x=0.3)在1170℃燒結三小時,可得最佳之介電特性εr~51,Q×f~26600(6GHz),τf~70(ppm/oC)。另外在Zr0.3(Zn1/3Nb2/3)0.7TiO4中分別添加不同燒結促進劑CuO、 B2O3,探討產生的液相對其燒結溫度及其微波特性的影響,當添加2wt%的CuO可有效降低燒結溫度到960℃,此時可得介電特性:εr~49.6,Q×f~16500(6.3GHz),τf~55(ppm/oC)。
此外,本論文以FR4、氧化鋁、La(Mg1/2Ti1/2)O3為基板,利用DBR設計一個帶通濾波器,中心頻率為1.8GHz,並比較模擬跟實作差異。
The microwave dielectric properties of Zrx(Zn1/3Nb2/3)1-xTiO4 (X=0.1~0.4) dielectric ceramics materials are discussed in this paper. The experiment results show that Zr0.3(Zn1/3Nb2/3)0.7TiO4(x=0.3) has the best properties with sintering temperature at 1170 oC , the dielectric properties are εr ~ 51,Q×f ~ 26600(6 GHz). τf ~ 70 (ppm/oC). By adding different sintering aids, B2O3 and CuO respectively, the existence effects of liquid phase can be researched for the microwave properties of Zr0.3(Zn1/3Nb2/3)0.7TiO4 ceramics. With 2wt% CuO additions, Zr0.3(Zn1/3Nb2/3)0.7TiO4 ceramics can be efficiently reduced sintering temperature from 1170 oC to 960 oC, the dielectric properties are εr ~ 49.6, Q×f ~ 16500(6.3 GHz) and τf ~ 55( ppm/oC).
In addition, bandpass filters by using DBR on FR4, Al2O3, Zr0.3(Zn1/3Nb2/3)0.7TiO4 substrates have been designed. The center frequency is 1.8GHz. The difference between the simulation and the actual measurement are also discussed.
參考文獻
[1] W. S. Kim, J. H. Kim, J. H. Kim, K. H. Hur, and J. Y. Lee, “Microwave Dielectric Properties of the ZrO2-ZnO-Ta2O5-TiO2 Systems,” Materials Chemistry and Physics, vol.79, pp.204-207, 2003.
[2] C. Quendo, E. Rius and C. Person, “Narrow Bandpass Filters Using Dual-Behavior Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no.3, pp. 734-743, 2003.
[3] C. Quendo, E. Rius and C. Person, “Narrow Bandpass Filters Using Dual-Behavior Resonators Based on Stepped-Impedance Stubs and Different-Length Stubs,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no.3, pp. 1034-1044, 2004.
[4] 邱碧秀,電子陶瓷材料,徐氏基金會出版,中華民國,1997。
[5] G.. Burns, Solid state physics., Orlando: Academic Press, 1985, p. 461.
[6] K. Wankino, H. Murata, and H. Tamura, “Far infrared reflection spectra of Ba(Zn,Ta)O3-BaZrO3 dielectric resonator material,” J. Am. Ceram. Soc., vol. 69, pp. 34-37, Jan. 1986.
[7] W. E. Courtney, “Analysis and evaluation of a method of measuring the com-plex per-mittivity and permeability of microwave insulators,” IEEE. Trans. Mi-crowave Theory Tech., vol. MTT-18, pp. 476-485, Aug. 1970.
[8] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998, ch.1.
[9] D. Kajfez, “Computed model field distribution for isolated dielectric resonator-s,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[10] D. Kajfez, “Basic principle give understanding of dielectric waveguides and r-esonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
[11] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House, 1989.
[12] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Press, pp. 189-202, 1979.
[13] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch.
[14] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
[15] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase s-intering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
[16] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
[17] R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
[18] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe allo-ys,” J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
[19] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
[20] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[21] E. O. Hammerstard, in Proceedings of the european microwave conference., pp. 268-272, 1975.
[22] E. J. Denlinger, “Losses of microstrip lines,” IEEE. Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun. 1980
[23] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[24] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[25] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Te- ch., vol. MTT-20, pp. 573-578, Sep. 1980.
[26] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[27] B. W. Hakki, and P. D. Coleman, “A dielectric resonator method of measure-ng inductive capacities in the millimeter range,” IEEE. Trans. Microwave Theory Tech., vol. MTT-8, pp. 402-410, 1960
[28] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of lo-w-loss materials by dielectric rod resonator method,” IEEE Trans. Micr- owave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
[29] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. Microwave Theory Tech., vol. MTT-28, pp. 1077-1085, 1980
[30] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators,” IEEE MTT-S Symposium Dig., pp. 473-476, 1985.
[31] Y. K. Kim, and H. M. Jang “Raman line-ahape analysis of nano-structural evolution in cation-ordered ZrTiO4-based dielectrics,” Solid State communications, vol. 127, 99. 433-437, 2003