簡易檢索 / 詳目顯示

研究生: 賴勁安
Lai, Jing-Ann
論文名稱: 低溫製作M2+Nb2O6 (M=Mg, Zn and Ca)薄膜以應用在透明電子電路
Low-Temperature Prepared M2+Nb2O6 (M=Mg, Zn and Ca) Thin Films for Transparent Microelectronic Applications
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: 溶膠凝膠法Mg1-xZnxNb2O6薄膜透明電子元件漏電流機制
外文關鍵詞: Sol-Gel, Mg1-xZnxNb2O6 thin film, transparency, leakage conduction mechanism
相關次數: 點閱:115下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶膠凝膠法在ITO基板上塗佈Mg1-xZnxNb2O6 (MZNO)薄膜並蒸鍍Al金屬作為上電極,製作成金屬-絕緣層-金屬(MIM)結構的平面電容器。本實驗分為三部分,第一部分製作M2+Nb2O6 (M=Mg, Zn, Ca)薄膜探討薄膜介電特性的分析。由實驗結果可知,ZnNb2O6薄膜在退火溫度500°C時開始結晶且結晶溫度比MgNb2O6及CaNb2O6薄膜低100°C;而在介電常數表現,ZnNb2O6薄膜介電常數皆比MgNb2O6及CaNb2O6薄膜還大。
    在第二部分,藉由Zn離子取代嘗試去降低MgNb2O6薄膜之製程溫度及提高介電常數,並進一步分析Mg1-xZnxNb2O6薄膜在不同的取代比例及退火溫度下的物性與介電特性的關係。由實驗結果可知,在x=0.2,退火溫度400°C時為非晶態薄膜,介電常數約為46,介電損耗0.17,漏電流約為7.3×10-7A(外加偏壓為1V時),平均穿透率80%,光能隙大小為4.86 eV,比起在退火溫度500°C下MgNb2O6薄膜之介電常數有很大幅度的改善(由33增加至46),提高約39%,且製程溫度更降低了100°C。
    在第三部分,探討Mg1-xZnxNb2O6薄膜在不同的取代比例及退火溫度下的漏電流傳導機制。根據分析結果,操作電壓在0–3V,在低電場為歐姆(Ohmic)機制傳導;在低電場與高電場之間為空間電荷限制傳導(SCLC)機制;在高電場為博勒-諾德漢穿隧(FN tunneling)機制傳導,隨Zn取代量增加,影響臨界電場值大小,且退火溫度增加影響臨界電場值的改變可能是晶粒成長和晶界所造成。

    In this study, to prepare metal-insulator-metal(MIM) structure of the planar capacitance, the sol-gel method was used for coating Mg1-xZnxNb2O6 (MZNO) thin film on the indium tin oxide(ITO) coated substrates and aluminum metal top electrode deposited by electron beam evaporation. According to the results of measurements, the better electrical behavior of Mg1-xZnxNb2O6 thin film was obtain at x=0.2, where the dielectric constant, the average transparency, and the optical band gap were 46, 80%, and 4.86 eV at the annealing temperature of 400°C. Compared with MgNb2O6 thin film annealed at 500°C, the dielectric constant of Mg0.8Zn0.2Nb2O6 thin film was highly enhanced up from 33 to 46. And the fabrication temperature of Mg0.8Zn0.2Nb2O6 thin film was lower 100°C than that of MgNb2O6. The leakage conduction mechanism of Mg1-xZnxNb2O6 thin film at various substitution proportions and annealing temperature from the low to high electric field was Ohmic conduction, space-charge-limited conduction(SCLC), FN tunneling conduction mechanism, respectively.

    摘要 I SUMMARY III 誌謝IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1前言及研究目的 1 1.2論文架構 4 第二章 文獻回顧 5 2.1介電材料之介電常數 5 2.1-1介電係數 5 2.1-2介電極化 5 2.1-3 MIM結構之C-V量測 8 2.2漏電流電流傳導機制 9 2.2-1蕭特基發射(Schottky emission) 9 2.2-2歐姆接觸(Ohmic contact) 9 2.2-3穿隧(Tunneling) 10 2.2-4普爾-法蘭克發射(Poole-Frenkel emission) 10 2.2-5空間電荷限制傳導(Space-charge-limited conduction, SCLC) 11 2.3二元金屬氧化物薄膜之物性及電性文獻回顧 16 2.4 M2+Nb2O6 (M=Mg, Zn, Ca)晶體結構 17 2.5 MgNb2O6介電薄膜文獻回顧 19 第三章 實驗方法與步驟21 3.1溶膠凝膠法(Sol-Gel)介紹 21 3.1-1薄膜製作 21 3.1-2低溫焦化處理 22 3.1-3高溫熱處理 22 3.2電子束蒸鍍法(Electron beam evaporation)介紹 22 3.3實驗材料與基材(Substrate) 23 3.4實驗設備 23 3.4-1旋轉塗佈機 23 3.4-2磁石攪拌平台23 3.4-3高溫爐 24 3.4-4電子束蒸鍍機 24 3.5實驗流程 26 3.6實驗分析與鑑定儀器 27 3.6-1多功能X光薄膜繞射儀(X-ray diffractometer, XRD) 27 3.6-2掃描式電子顯微鏡(FE-SEM) 28 3.6-3穿透式電子顯微鏡(TEM) 28 3.6-4 X射線光電子能譜儀(X-ray photoelectron spectroscopy; XPS) 29 3.6-5紫外線/可見光分光光譜儀(UV-VIS-NIR spectrometers) 29 3.6-6半導體參數分析儀/阻抗分析儀 29 第四章 實驗結果與討論 30 4.1 M2+Nb2O6 (M=Mg, Zn, Ca)薄膜在不同退火溫度之物性與電性分析 30 4.1-1 XRD薄膜分析 30 4.1-2 Al/M2+Nb2O6 (M=Mg, Ca, Zn)/ITO 電性分析 34 4.1-2-1漏電流關係(I-V curve) 34 4.1-2-2電容-電壓及介電損耗-電壓曲線(C-V/DF-V curve) 34 4.1-3綜合討論 38 4.2 Mg1-xZnxNb2O6薄膜在不同退火溫度及不同取代比例之物性與電性分析 39 4.2-1 XRD薄膜分析 39 4.2-2 SEM薄膜分析 41 4.2-3 TEM微結構分析 43 4.2-4 XPS薄膜表面化學鍵結分析 44 4.2-5薄膜光學性質量測 48 4.2-5-1 UV-VIS量測 48 4.2-5-2 Energy gap(Eg)計算 48 4.2-6 Al/Mg1-xZnxNb2O6/ITO電性分析 51 4.2-6-1漏電流關係(I-V curve) 51 4.2-6-2電容-電壓及介電損耗-電壓曲線(C-V/DF-V curve) 51 4.2-6-3電容-頻率及介電損耗-頻率曲線(C-f/DF-f curve) 52 4.2-7 綜合討論 59 4.3 Mg1-xZnxNb2O6薄膜在不同退火溫度及不同取代比例之漏電流機制分析 60 4.3-1蕭特基發射(Schottky emission)及普爾-法蘭克發射(Poole-Frenkel emission) 60 4.3-2博勒-諾德漢穿隧(Fowler-Nordheim tunneling) 61 4.3-3空間電荷限制傳導(Space-charge-limited conduction, SCLC) 61 4.3-4綜合討論 67 第五章 結論 69 參考文獻 70

    [1] Y. D. Ho, K. R. Chen, C. L. Huang, “Sol-Gel-Derived Amorphous-MgNb2O6 Thin Films for Transparent Microelectronics,” J. Am. Ceram. Soc., 96 (2013) 3375–3378.

    [2] D. Bao, X. Yao, L. Zhang, “Dielectric Enhancement and Ferroelectric Anomaly of Compositionally Graded (Pb,Ca)TiO3 Thin Films Derived by a Modified Sol-Gel Technique,” Appl. Phys. Lett., 76 (2000) 2779–2781.

    [3] H. S. P. Wong, “Beyond the Conventional Transistor,” IBM J. Res. Dev., 46 (2002) 133–168.

    [4] M. H. Cho, Y. S. Roh, C. N. Whang, “Thermal Stability and Structural Characteristics of HfO2 Films on Si (100) Grown by Atomic-Layer Deposition,” Appl. Phys. Lett., 81 (2002) 472–474.

    [5] D. Triyoso, R. Liu, D. Roan, M. Ramon, N. V. Edwards, et al., “Impact of Deposition and Annealing Temperature on Material and Electrical Characteristics of ALD HfO2,” J. Electrochem. Soc., 151 (2004) F220–F227.

    [6] M. Dong, H. Wang, L. P. Shen, Y. Ye, C. Ye, et al., “Dielectric Property and Electrical Conduction Mechanism of ZrO2-TiO2 Composite Thin Films,” J. Mater. Sci.: Mater. Electron., 23 (2011) 174–179.

    [7] H. C. Lin, P. D. Ye, G. D. Wilk, “Leakage Current and Breakdown Electric-Field Studies on Ultrathin Atomic-Layer Deposited Al2O3 on GaAs,” Appl. Phys. Lett., 87 (2005) 182904-1–3.

    [8] Z. Habibah, A. N. Arshad, L. N. Ismail, “Chemical Solution Deposited Magnesium Oxide Films: Influence of Deposition Time on Electrical and Structural Properties,” Procedia Eng., 56 (2013) 737–742.

    [9] C. Y. Tsay, C. H. Cheng, Y. W. Wang, “Properties of Transparent Yttrium Oxide Dielectric Films Prepared by Sol-Gel Process,” Ceram. Int., 38 (2012) 1677–1682.

    [10] H. Shimizu, S. Konagai, M. Ikeda, T. Nishide, “Characterization of Sol-Gel Derived and Crystallized ZrO2 Thin Films,” J. Appl. Phys. Jpn., 48 (2009) 101101-1–6.

    [11] S. Choi, B. Y. Park, S. Jeong, J. Y. Lee, B. H. Ryu, H. K. Jung, “Low Voltage Operated, Sol-Gel Derived Oxide Thin Film Transistor Based on High-k Gd2O3 Gate Dielectric,” Mater. Sci., 138 (2013) 1–4.

    [12] J. H. Jun, C. H. Wang, D. J. Won, D. J. Choi, “Structural and Electrical Properties of a La2O3 Thin Film as a Gate Dielectric,” J. Appl. Phys, Kor., 41 (2002) 998–1002.

    [13] Z. J. Wang, T. Kumagai, H. Kokawa, M. Ichiki, R. Maeda, “Preparation of Hafnium Oxide Thin Films by Sol-Gel Method,” J. Electroceram., 21 (2008) 499–502.

    [14] M. J. Alam, D. C. Cameron, “Preparation and Characterization of TiO2 Thin Films by Sol-Gel Method,” J. Sol-Gel Sci. Technol., 25 (2002) 134–145.

    [15] C. H. Kao, H. Chen, J. S. Chiu, K. S. Chen, Y. T. Pan, “Physical and Electrical Characteristics of the High-k Ta2O5 (Tantalum Pentoxide), Dielectric Deposited on the Polycrystalline Silicon,” Appl. Phys. Lett., 96 (2010) 112901-1–5.

    [16] M. Vishwas, K. N. Rao, A. R. Phani, “Effect of Annealing Temperature on Electrical and Nano-Structural Properties of Sol-Gel derived ZnO Thin Films,” J. Mater. Sci.-Mater. Electron., 22 (2011) 1415–1419.

    [17] H. Garc´ıa, H. Cast´an, E. Perez, S. Due˜nas, L. Bail´on, “Influence of Growth and Annealing Temperatures on the Electrical Properties of Nb2O5-Based MIM Capacitors,” Semic. Sci. T., 28 (2013) 055005-1–5.

    [18] C. H. Cheng, H. C. Pan, H. J. Yang, C. N. Hsiao, C. P. Chou, S. P. McAlister, “Improved High-Temperature Leakage in High-Density MIM Capacitors by Using a TiLaO Dielectric and an Ir Electrode,” Electron. Dev. Lett., 28 (2007) 1095–1097.

    [19] W. Bolton, “Engineering Materials Technology,” Third edition, Butterworth Heinemann, Oxford (1998).

    [20] S. Yu, X. Guan, H. S. Philip Wong, “Conduction Mechanism of TiN/HfOx/Pt Resistive Switching Memory: A Trapassisited-Tunneling Model,” Appl. Phys. Lett., 99 (2011) 063507-1–3.

    [21] A. Koszewski, F. Souchon, Ch. Dieppedale, D. Bloch, T. Ouisse, “Physical Model of Dielectric Charging in MEMS,” J. Micromech. Microeng., 23 (2013) 045019-1–12.

    [22] 李雅明,「固態電子學」,全華科技圖書股份有限公司,1995年。

    [23] W. Y. Chang, J. H. Liao, Y. S. Lo, T. B. Wu, “Resistive Switching Characteristics in Pr0.7Ca0.3MnO3 Thin Film on LaNiO3-Electrodized Si Substrate,” Appl. Phys. Lett., 94 (2009) 172107-1–3.

    [24] K. C. Kao, W. Hwang, “Electrical Transport in Solids: with Particular Reference to Organic Semiconductors,” First edition, Pergamon Press, New York (1970).

    [25] L. Yan, H. B. Lu, G. T. Tan, “High Quality, High-k Gate Dielectric: Amorphous LaAlO3 Thin Films Grown on Si(100) Without Si Interfacial Layer,” Appl. Phys. A, 77 (2003) 721–724.

    [26] H. M. Christen, G. E. Jellison Jr., I. Ohkubo, “Dielectric and Optical Properties of Epitaxial Rare-Earth Scandate Films and Their Crystallization Behavior,” Appl. Phys. Lett., 88 (2006) 262906-1–3.

    [27] A. P. Milanov, K. Xu, S. Cwik, “Sc2O3, Er2O3, and Y2O3 Thin Films by MOCVD from Volatile Guanidinate Class of Rare-Earth Precursors,” J. Chem. Soc., Dalton Trans., 41 (2012) 13936–13947.

    [28] R. C. Pullar, “The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review,” J. Am. Ceram. Soc., 92 (2009) 563–577.

    [29] 李昕澄,「Zn(Nb1-xTax)2O6陶瓷材料其微波介電性質與結構之探討」,國立成功大學資源工程學系碩士論文,2010年。

    [30] 劉志益、曾俊元,「電阻式非揮發性記憶體之近期發展」,電子月刊,第十一卷第四期,2005年。

    [31] C. L. Huang, W. R. Yang, P. C. Yu, “High-Q Microwave Dielectrics in Low-Temperature sintered (Zn1−xNix)3Nb2O8 Ceramics,” J. Eur. Ceram. Soc., 34 (2014) 277–284.

    [32] T. H. Fang, Y. J. Hsiao, Y. S. Chang, “Luminescent and Structural Properties of MgNb2O6 Nanocrystals,” Curr. Opin. Solid State Mater. Sci., 12 (2008) 51–54.

    [33] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, “Realization of Band Gap above 5.0 eV in Metastable Cubic-Phase MgxZn1-xO alloy films,” Appl. Phys. Lett., 80 (2002) 1529–1531.

    [34] V. J. Fratello, C. D. Brandle, “Calculation of Dielectric Polarizabilities of Perovskite Substrate Materials for High-Temperature Superconductors,” J. Mater. Res., 9 (1994) 2555–2560.

    [35] P. F. Ning, L. X. Li, W. S. Xia, X. Y. Zhang, “Low Temperature Crystallized Voltage Tunable Bi1.5CuxMg1-xNb1.5O7 Thin Films Capable of Integration with Au Electrode,” Ceram. Int., 38 (2012) 5299–5303.

    [36] N. Y. Chan, D. Y. Wang, Y. Wang, J. Y. Dai, H. L. W. Chan, “The Structural and In-Plane Dielectric/Ferroelectric Properties of the Epitaxial (Ba,Sr)(Zr,Ti)O3 Thin Films,” J. Appl. Phys., 115 (2014) 234102-1–7.

    [37] B. S. Chiou, S. T. Lin, J. G. Duh, P. H. Chang, “Equivalent Circuit Model in Grain-Boundary Barrier Layer Capacitors,” J. Am. Ceram. Soc., 72 (1989) 1967–1975.

    [38] X. Song, R. Fu, H. He, “Frequency Effects on the Dielectric Properties of AlN Film Deposited by Radio Frequency Reactive Magnetron Sputtering,” Microelectron. Eng., 86 (2009) 2217–2221.

    [39] Y. Cheng, X. D. Xu, J. Xu, Z. Xin, S. M. Zhou, “Spectroscopic Properties of Nd3+: CaNb2O6 Crystal,” Appl. Phys. B, 96 (2009) 43–50.

    [40] H. Kim, P. C. McIntyre, K. C. Saraswat, “Effects of Crystallization on the Electrical Properties of Ultrathin HfO2 Dielectrics Grown by Atomic Layer Deposition,” Appl. Phys. Lett., 82 (2003) 106–108.

    下載圖示 校內:2020-02-11公開
    校外:2020-02-11公開
    QR CODE