| 研究生: |
賴勁安 Lai, Jing-Ann |
|---|---|
| 論文名稱: |
低溫製作M2+Nb2O6 (M=Mg, Zn and Ca)薄膜以應用在透明電子電路 Low-Temperature Prepared M2+Nb2O6 (M=Mg, Zn and Ca) Thin Films for Transparent Microelectronic Applications |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 溶膠凝膠法 、Mg1-xZnxNb2O6薄膜 、透明電子元件 、漏電流機制 |
| 外文關鍵詞: | Sol-Gel, Mg1-xZnxNb2O6 thin film, transparency, leakage conduction mechanism |
| 相關次數: | 點閱:115 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶膠凝膠法在ITO基板上塗佈Mg1-xZnxNb2O6 (MZNO)薄膜並蒸鍍Al金屬作為上電極,製作成金屬-絕緣層-金屬(MIM)結構的平面電容器。本實驗分為三部分,第一部分製作M2+Nb2O6 (M=Mg, Zn, Ca)薄膜探討薄膜介電特性的分析。由實驗結果可知,ZnNb2O6薄膜在退火溫度500°C時開始結晶且結晶溫度比MgNb2O6及CaNb2O6薄膜低100°C;而在介電常數表現,ZnNb2O6薄膜介電常數皆比MgNb2O6及CaNb2O6薄膜還大。
在第二部分,藉由Zn離子取代嘗試去降低MgNb2O6薄膜之製程溫度及提高介電常數,並進一步分析Mg1-xZnxNb2O6薄膜在不同的取代比例及退火溫度下的物性與介電特性的關係。由實驗結果可知,在x=0.2,退火溫度400°C時為非晶態薄膜,介電常數約為46,介電損耗0.17,漏電流約為7.3×10-7A(外加偏壓為1V時),平均穿透率80%,光能隙大小為4.86 eV,比起在退火溫度500°C下MgNb2O6薄膜之介電常數有很大幅度的改善(由33增加至46),提高約39%,且製程溫度更降低了100°C。
在第三部分,探討Mg1-xZnxNb2O6薄膜在不同的取代比例及退火溫度下的漏電流傳導機制。根據分析結果,操作電壓在0–3V,在低電場為歐姆(Ohmic)機制傳導;在低電場與高電場之間為空間電荷限制傳導(SCLC)機制;在高電場為博勒-諾德漢穿隧(FN tunneling)機制傳導,隨Zn取代量增加,影響臨界電場值大小,且退火溫度增加影響臨界電場值的改變可能是晶粒成長和晶界所造成。
In this study, to prepare metal-insulator-metal(MIM) structure of the planar capacitance, the sol-gel method was used for coating Mg1-xZnxNb2O6 (MZNO) thin film on the indium tin oxide(ITO) coated substrates and aluminum metal top electrode deposited by electron beam evaporation. According to the results of measurements, the better electrical behavior of Mg1-xZnxNb2O6 thin film was obtain at x=0.2, where the dielectric constant, the average transparency, and the optical band gap were 46, 80%, and 4.86 eV at the annealing temperature of 400°C. Compared with MgNb2O6 thin film annealed at 500°C, the dielectric constant of Mg0.8Zn0.2Nb2O6 thin film was highly enhanced up from 33 to 46. And the fabrication temperature of Mg0.8Zn0.2Nb2O6 thin film was lower 100°C than that of MgNb2O6. The leakage conduction mechanism of Mg1-xZnxNb2O6 thin film at various substitution proportions and annealing temperature from the low to high electric field was Ohmic conduction, space-charge-limited conduction(SCLC), FN tunneling conduction mechanism, respectively.
[1] Y. D. Ho, K. R. Chen, C. L. Huang, “Sol-Gel-Derived Amorphous-MgNb2O6 Thin Films for Transparent Microelectronics,” J. Am. Ceram. Soc., 96 (2013) 3375–3378.
[2] D. Bao, X. Yao, L. Zhang, “Dielectric Enhancement and Ferroelectric Anomaly of Compositionally Graded (Pb,Ca)TiO3 Thin Films Derived by a Modified Sol-Gel Technique,” Appl. Phys. Lett., 76 (2000) 2779–2781.
[3] H. S. P. Wong, “Beyond the Conventional Transistor,” IBM J. Res. Dev., 46 (2002) 133–168.
[4] M. H. Cho, Y. S. Roh, C. N. Whang, “Thermal Stability and Structural Characteristics of HfO2 Films on Si (100) Grown by Atomic-Layer Deposition,” Appl. Phys. Lett., 81 (2002) 472–474.
[5] D. Triyoso, R. Liu, D. Roan, M. Ramon, N. V. Edwards, et al., “Impact of Deposition and Annealing Temperature on Material and Electrical Characteristics of ALD HfO2,” J. Electrochem. Soc., 151 (2004) F220–F227.
[6] M. Dong, H. Wang, L. P. Shen, Y. Ye, C. Ye, et al., “Dielectric Property and Electrical Conduction Mechanism of ZrO2-TiO2 Composite Thin Films,” J. Mater. Sci.: Mater. Electron., 23 (2011) 174–179.
[7] H. C. Lin, P. D. Ye, G. D. Wilk, “Leakage Current and Breakdown Electric-Field Studies on Ultrathin Atomic-Layer Deposited Al2O3 on GaAs,” Appl. Phys. Lett., 87 (2005) 182904-1–3.
[8] Z. Habibah, A. N. Arshad, L. N. Ismail, “Chemical Solution Deposited Magnesium Oxide Films: Influence of Deposition Time on Electrical and Structural Properties,” Procedia Eng., 56 (2013) 737–742.
[9] C. Y. Tsay, C. H. Cheng, Y. W. Wang, “Properties of Transparent Yttrium Oxide Dielectric Films Prepared by Sol-Gel Process,” Ceram. Int., 38 (2012) 1677–1682.
[10] H. Shimizu, S. Konagai, M. Ikeda, T. Nishide, “Characterization of Sol-Gel Derived and Crystallized ZrO2 Thin Films,” J. Appl. Phys. Jpn., 48 (2009) 101101-1–6.
[11] S. Choi, B. Y. Park, S. Jeong, J. Y. Lee, B. H. Ryu, H. K. Jung, “Low Voltage Operated, Sol-Gel Derived Oxide Thin Film Transistor Based on High-k Gd2O3 Gate Dielectric,” Mater. Sci., 138 (2013) 1–4.
[12] J. H. Jun, C. H. Wang, D. J. Won, D. J. Choi, “Structural and Electrical Properties of a La2O3 Thin Film as a Gate Dielectric,” J. Appl. Phys, Kor., 41 (2002) 998–1002.
[13] Z. J. Wang, T. Kumagai, H. Kokawa, M. Ichiki, R. Maeda, “Preparation of Hafnium Oxide Thin Films by Sol-Gel Method,” J. Electroceram., 21 (2008) 499–502.
[14] M. J. Alam, D. C. Cameron, “Preparation and Characterization of TiO2 Thin Films by Sol-Gel Method,” J. Sol-Gel Sci. Technol., 25 (2002) 134–145.
[15] C. H. Kao, H. Chen, J. S. Chiu, K. S. Chen, Y. T. Pan, “Physical and Electrical Characteristics of the High-k Ta2O5 (Tantalum Pentoxide), Dielectric Deposited on the Polycrystalline Silicon,” Appl. Phys. Lett., 96 (2010) 112901-1–5.
[16] M. Vishwas, K. N. Rao, A. R. Phani, “Effect of Annealing Temperature on Electrical and Nano-Structural Properties of Sol-Gel derived ZnO Thin Films,” J. Mater. Sci.-Mater. Electron., 22 (2011) 1415–1419.
[17] H. Garc´ıa, H. Cast´an, E. Perez, S. Due˜nas, L. Bail´on, “Influence of Growth and Annealing Temperatures on the Electrical Properties of Nb2O5-Based MIM Capacitors,” Semic. Sci. T., 28 (2013) 055005-1–5.
[18] C. H. Cheng, H. C. Pan, H. J. Yang, C. N. Hsiao, C. P. Chou, S. P. McAlister, “Improved High-Temperature Leakage in High-Density MIM Capacitors by Using a TiLaO Dielectric and an Ir Electrode,” Electron. Dev. Lett., 28 (2007) 1095–1097.
[19] W. Bolton, “Engineering Materials Technology,” Third edition, Butterworth Heinemann, Oxford (1998).
[20] S. Yu, X. Guan, H. S. Philip Wong, “Conduction Mechanism of TiN/HfOx/Pt Resistive Switching Memory: A Trapassisited-Tunneling Model,” Appl. Phys. Lett., 99 (2011) 063507-1–3.
[21] A. Koszewski, F. Souchon, Ch. Dieppedale, D. Bloch, T. Ouisse, “Physical Model of Dielectric Charging in MEMS,” J. Micromech. Microeng., 23 (2013) 045019-1–12.
[22] 李雅明,「固態電子學」,全華科技圖書股份有限公司,1995年。
[23] W. Y. Chang, J. H. Liao, Y. S. Lo, T. B. Wu, “Resistive Switching Characteristics in Pr0.7Ca0.3MnO3 Thin Film on LaNiO3-Electrodized Si Substrate,” Appl. Phys. Lett., 94 (2009) 172107-1–3.
[24] K. C. Kao, W. Hwang, “Electrical Transport in Solids: with Particular Reference to Organic Semiconductors,” First edition, Pergamon Press, New York (1970).
[25] L. Yan, H. B. Lu, G. T. Tan, “High Quality, High-k Gate Dielectric: Amorphous LaAlO3 Thin Films Grown on Si(100) Without Si Interfacial Layer,” Appl. Phys. A, 77 (2003) 721–724.
[26] H. M. Christen, G. E. Jellison Jr., I. Ohkubo, “Dielectric and Optical Properties of Epitaxial Rare-Earth Scandate Films and Their Crystallization Behavior,” Appl. Phys. Lett., 88 (2006) 262906-1–3.
[27] A. P. Milanov, K. Xu, S. Cwik, “Sc2O3, Er2O3, and Y2O3 Thin Films by MOCVD from Volatile Guanidinate Class of Rare-Earth Precursors,” J. Chem. Soc., Dalton Trans., 41 (2012) 13936–13947.
[28] R. C. Pullar, “The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review,” J. Am. Ceram. Soc., 92 (2009) 563–577.
[29] 李昕澄,「Zn(Nb1-xTax)2O6陶瓷材料其微波介電性質與結構之探討」,國立成功大學資源工程學系碩士論文,2010年。
[30] 劉志益、曾俊元,「電阻式非揮發性記憶體之近期發展」,電子月刊,第十一卷第四期,2005年。
[31] C. L. Huang, W. R. Yang, P. C. Yu, “High-Q Microwave Dielectrics in Low-Temperature sintered (Zn1−xNix)3Nb2O8 Ceramics,” J. Eur. Ceram. Soc., 34 (2014) 277–284.
[32] T. H. Fang, Y. J. Hsiao, Y. S. Chang, “Luminescent and Structural Properties of MgNb2O6 Nanocrystals,” Curr. Opin. Solid State Mater. Sci., 12 (2008) 51–54.
[33] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, “Realization of Band Gap above 5.0 eV in Metastable Cubic-Phase MgxZn1-xO alloy films,” Appl. Phys. Lett., 80 (2002) 1529–1531.
[34] V. J. Fratello, C. D. Brandle, “Calculation of Dielectric Polarizabilities of Perovskite Substrate Materials for High-Temperature Superconductors,” J. Mater. Res., 9 (1994) 2555–2560.
[35] P. F. Ning, L. X. Li, W. S. Xia, X. Y. Zhang, “Low Temperature Crystallized Voltage Tunable Bi1.5CuxMg1-xNb1.5O7 Thin Films Capable of Integration with Au Electrode,” Ceram. Int., 38 (2012) 5299–5303.
[36] N. Y. Chan, D. Y. Wang, Y. Wang, J. Y. Dai, H. L. W. Chan, “The Structural and In-Plane Dielectric/Ferroelectric Properties of the Epitaxial (Ba,Sr)(Zr,Ti)O3 Thin Films,” J. Appl. Phys., 115 (2014) 234102-1–7.
[37] B. S. Chiou, S. T. Lin, J. G. Duh, P. H. Chang, “Equivalent Circuit Model in Grain-Boundary Barrier Layer Capacitors,” J. Am. Ceram. Soc., 72 (1989) 1967–1975.
[38] X. Song, R. Fu, H. He, “Frequency Effects on the Dielectric Properties of AlN Film Deposited by Radio Frequency Reactive Magnetron Sputtering,” Microelectron. Eng., 86 (2009) 2217–2221.
[39] Y. Cheng, X. D. Xu, J. Xu, Z. Xin, S. M. Zhou, “Spectroscopic Properties of Nd3+: CaNb2O6 Crystal,” Appl. Phys. B, 96 (2009) 43–50.
[40] H. Kim, P. C. McIntyre, K. C. Saraswat, “Effects of Crystallization on the Electrical Properties of Ultrathin HfO2 Dielectrics Grown by Atomic Layer Deposition,” Appl. Phys. Lett., 82 (2003) 106–108.