| 研究生: |
鄭國清 Cheng, Kuo-Ching |
|---|---|
| 論文名稱: |
近紫外激發矽酸鹽類螢光粉合成及螢光膠薄層應用於可置換式白光LED The Synthesis of Silicate Phosphors for Near Ultraviolet Excitation and Application of Phosphor Films for Replaceable White LED |
| 指導教授: |
朱聖緣
Chu, Sheng-yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 矽酸鹽類螢光粉 、熱穩定性 、螢光膠薄層 |
| 外文關鍵詞: | silicate phosphor, thermal stability, phosphor film |
| 相關次數: | 點閱:143 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用固態反應法合成近紫外光激發之矽酸鹽類BaZr1-yHfySi3O9:Eu2+藍綠色螢光粉與Li2SrSi1-yTiyO4:Eu2+黃色螢光粉,利用兩種螢光粉搭配近紫外光發光二極體(Light-emitting Diodes, LEDs)混合成白光,然而近紫外光LED操作時表面溫度會變高,故螢光粉需要更好的熱穩定性,且近紫外光激發螢光粉發光強度不高,因此本研究著重於改善螢光粉之熱穩定性及發光強度。前者藍綠色螢光粉隨Hf4+摻雜濃度提升熱穩定性(T50由230 °C提高到281 °C);後者黃色螢光粉摻雜Ti4+發光強度提升14.15%,兩者皆具較寬之激發光譜,皆適用於近紫外光LED。
其中BaZr1-yHfySi3O9:Eu2+藍綠色螢光粉利用Hf4+取代Zr4+,Hf之質量較大,因此晶格振動受熱影響變小,活化能變大(由0.374 eV提升至0.3832 eV),降低非輻射緩解的機率,但由於摻雜Hf4+時會有雜相產生,隨Hf4+濃度變大,發光強度大幅降低;最後選擇加入NH4Cl作為助熔劑,可幫助結晶反應,使結晶性更好,減少雜相,以6 wt% NH4Cl為最佳濃度,其發光強度大幅提升,且維持較佳熱穩定性。Li2SrSi1-yTiyO4:Eu2+黃色螢光粉則利用Ti4+取代Si4+,Ti4+使平均晶粒大小變大(從65.71 nm至70.47 nm),最佳摻雜濃度為0.02 mol%,而發光強度會隨Crystallite size變化。
將上述之BaZr1-yHfySi3O9:Eu2+藍綠色螢光粉及商用(Ba, Sr, Ca)2SiO4:Eu2+黃色螢光粉,搭配近紫外光(395-400 nm) LED產生白光。本研究採取與以往不同的螢光膠薄層結合反射杯製備可置換式白光LED,其優點為可任意拆裝,調變不同參數於單一LED,可任意調整白光LED之特性,藉由不同片數以找出最佳白光LED的特性,本研究最佳化元件特性:白光CIE座標為(0.325,0.358),照明效率為20.9158 lm/W,演色性為80.47。
In this study, BaZr1-yHfySi3O9: Eu2+ and Li2SrSi1-yTiyO4: Eu2+ silicate phosphors were synthesized by the solid-state reaction method, which could be well excited by near-ultraviolet (UV) light. Using near-UV light-emitting diode (LED) chip to excite cyan and yellow color phosphors was a feasible way to generate white light. However, due to higher operating temperature for UV-LEDs, phosphors with better thermal stability became crucial. Thus, this work focused on improving the thermal stability and the luminous intensity. The thermal stability of the former was improved with increasing the concentration of Hf4+ ions. T50 value (the temperature at which the emission intensity falls to 50% of that at room temperature) was enhanced from 230 to 281 °C. Besides, the emission intensity of the latter was enhanced 14.15% by doping Ti4+. Because of their broad excitation spectra, these phosphors could be applied on the near-UV LEDs to form the phosphor-converted white LEDs (pc-WLEDs).
The thermal stability of BaZr1-yHfySi3O9:Eu2+ phosphors enhanced due to the substitution of Zr4+ by Hf4+ ions, which affected smaller lattice vibrations by phonons from heating. Therefore, the activation energy was increased from 0.374 to 0.3832 eV, reducing the probabilities of non-radiative reaction. However, due to the doping of Hf4+, the emission intensity decreased apparently with the increasing concentration of Hf4+ with impurity phase.Finally, NH4Cl was added to raw material as flux and promoted the crystallization reaction. The optimal concentration of NH4Cl was found to be 6 wt%. Besides, Li2SrSi1-yTiyO4: Eu2+phosphors were doped by Ti4+, which leads to larger crystallite size, from 65.71 to 70.47 nm. The optimal concentration of Ti4+ was 2 mol% and the emission intensity could depend on the crystallite size.
For the WLED application, BaZr1-yHfySi3O9:Eu2+ cyan phosphors and commercial (Ba, Sr, Ca)2SiO4:Eu2+ yellow phosphors were combined with near-UV-LEDs (λex=395-400 nm) to generate white light. In the past, the conventional dispensing technology was directly coating on chip. In this study, the reflector cup was combined with phosphor films to form replaceable white LEDs. It takes significant advantages for practical applications such as detachable, low-cost, and one LED with various parameters for characteristics of white LED. By modulating number of different pieces of phosphor films, it is suitable to find the optimal characteristics of the white LEDs. The optimum luminous efficiency, CIE coordinates, and CRI of the final proposed devices were 20.9158 lm/W, (0.325, 0.358), and 80.47, respectively.
[1] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Applied Physics A: Materials Science & Processing, 64, 417-18 (1997).
[2] K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor,” Optics Letters, 29, 2001-03 (2004).
[3] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technology Letters, 17, 1160-62 (2005).
[4] Y. Liu, X. Zhang, Z. Hao, W. Lu, X. Liu, X. J. Wang, and J. Zhang, “Crystal structure and luminescence properties of (Ca2.94-xLuxCe0.06)(Sc2-yMgy)Si3O12 phosphors for white LEDs with excellent colour rendering and high luminous efficiency,” Journal of Physics D: Applied Physics, 44, 075402, 6pp (2011).
[5] Y.Shimizu, K.Sakano, Y.Noguchi, and T.Moriguchi, “Light emitting device having a nitride compound semiconducor and a phosphor containing a garnet fluorescent material,” United States Patent:5998925 (1997).
[6] 劉如熹、劉宇桓,發光二極體用氧氮螢光粉介紹,全華科技 (2006).
[7] 楊俊英,電子產業用螢光材料之調查,工研院,7 (1992).
[8] S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light- emitting diode,” Applied Physics Letters, 92, 143309, 3pp (2008).
[9] Y. Shuai, Y.Z. He, N. T. Tran, and F. G. Shi, “Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials and Packaging Structures,” IEEE Photonics Technology Letters, 23, 137-139 (2011).
[10] R. Y. Yu, S. Z. Jin, S. Y. Cen, and P. Liang, “Effect of the Phosphor Geometry on the Luminous Flux of Phosphor-Converted Light-Emitting Diodes,” IEEE Photonics Technology Letters, 22, 1765-1767 (2010).
[11] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic Phosphor Size Dependence of Luminous Efficacy for Typical White LED Emitters,” IEEE Photonics Technology Letters, 23, 552-554 (2011).
[12] B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” Journal of The Electrochemical Society, 159, J96-J106 (2012).
[13] Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Applied Optics, 49, 247-257 (2010).
[14] J. P. You, Y.-H. Lin, N. T. Tran, and F. G. Shi, “Phosphor Concentration Effects on Optothermal Characteristics of Phosphor Converted White Light-Emitting Diodes,” Journal of Electronic Packaging, 132, 031010-031012 (2010).
[15] N. T. Tran and F. G. Shi, “Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes,” Journal of Lightwave Technology, 26, 3556-3559 (2008).
[16] Z.-Y. Liu, S. Liu, K. Wang, and X.-B. Luo, “Studies on Optical Consistency of White LEDs Affected by Phosphor Thickness and Concentration Using Optical Simulation,” IEEE Transactions on Components and Packaging Technologies, 33, 680-687 (2010).
[17] C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The Impact of Inhomogeneities in the Phosphor Distribution on the Device Performance of Phosphor-Converted High-Power White LED Light Sources,” Journal of Lightwave Technology, 28, 3226-3232 (2010).
[18] C.-C. Tsai, J. Wang, M.-H. Chen, Y.-C. Hsu, Y.-J. Lin, C.-W. Lee, S.-B. Huang,
H.-L. Hu, and W.-H. Cheng, “Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light-Emitting Diodes,”IEEE Transactions on Device and Materials Reliability, 9, 367-370 (2009).
[19] N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED,” Journal of Lightwave Technology, 27, 5145-5149 (2009).
[20] C. Sommer, J. R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and F. P. Wenzl, “The Effect of the Phosphor Particle Sizes on the Angular Homogeneity of Phosphor-Converted High-Power White LED Light Sources,” IEEE Journal of Selected Topics in Quantum Electronics, 15, 1181-1188 (2009).
[21] S. C. Huang, J. K. Wu, and W.-J. Hsu, “Particle Size Effect on the Packaging Performance of YAG:Ce Phosphors in White LEDs,” International of Journal Applied Ceramic Technology, 6, 465–469 (2009).
[22] T. Fukui, K. Kamon, J. Takeshita, H. Hayashi, T. Miyachi, Y. Uchida, S. Kurai, and T. Taguchi, “Superior Illuminant Characteristics of Color Rendering and Luminous Efficacy in Multilayered Phosphor Conversion White Light Sources Excited by Near-Ultraviolet Light-Emitting Diodes,” Japanese Journal of Applied Physics, 48, 112101, 6pp (2009).
[23] Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light- Emitting Diodes with Multi-Phosphor Layers,” Japanese Journal of Applied Physics, 49, 100203, 3pp (2010) .
[24] Y.-H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Optics Letters, 34, 1-3 (2009).
[25] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light- emitting diodes with multi-layered phosphor configuration,” Optics Express, 18, 5055-5060 (2010).
[26] 劉如熹、許育賓、徐大正、丁逸聖、林群哲、解榮軍、廣琦尚登、黃振東、陳海英、肖國瑋、蘇宏元,白光發光二極體製作技術-由晶粒金屬化至封裝, 全華圖書 (2008)
[27] 蘇勉曾、吳世康,發光材料,全華科技,第四卷,1-39 (2004).
[28] 林麗玉,奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究, 國立交通大學應用化學研究所碩士論文 (2000).
[29] A. H. Kitai, “Visible luminescence-Solid state materials & applications,” Chapman & Hall: London (1992).
[30] R. A. Swalin, “Thermodynamics of Solids,” John Wiley & Sons, 335 (1972).
[31] D. Dimova-Malinovska, N. Tzenov, M. Tzolov, and L.Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Althin films,”Materials Science and Engineering: B, 52, 59-62 (1998).
[32] R. C. Ropp, “Luminescence and solid state.,” Elsevier Science Publishers, B. V. The Netherlands (1991).
[33] G. Blasse, and B. Grabmaier, “Luminescent materials,” Springer-Verlag, Berlin (1994).
[34]劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華科技 (2005).
[35] Z. Pan, S. H. Morgan. A. Loper, V. King, B. H. Long and W. E. Collins, “Infrared to visible upconversion in Er3+-doped-lead-germanate glass: effects of Er3+ ion concentration,” Journal of Applied Physics, 77, 4688-92 (1995).
[36] 曹正樸,基本材料科學,台灣商務印書館股份有限公司,台北,民64。
[37] E. F. Schubert, “LIGHT-EMITTING DIODES.” New York: Cambridge University (2006).
[38] 林蘇逸,高演色性白光發光二極體之研究,國立臺灣大學電機資訊學院 光電工程學研究所碩士論文 (2007).
[39] I. Ashdown, “Radiosity: A Programmer's Perspective” John Wiley & Sons, 14- 27 (2002).
[40] D. Y. Wang, C. H. Huang, Y. C. Wu, and T. M. Chen, "BaZrSi3O9:Eu2+: a cyan- emitting phosphor with high quantum efficiency for white light-emitting diodes," Journal of Materials Chemistry, 21, 10818 (2011).
[41] G. Blasse and A. Bril, “luorescence and Structure of Barium Zirconium Trisilicate,” Journal of Solid State Chemistry, 2, 105108 (1970).
[42] Y. Takahashi, K. Iwasaki, H. Masai and T. Fujiwara, “Afterglow in synthetic bazirite, BaZrSi3O9,” Journal of the Ceramic Society of Japan, 2, 357-360 (2008).
[43] Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura and S. Inoue, “Raman spectroscopic study of benitoite-type compounds,” Journal of the Ceramic Society of Japan, 10, 1139-1142 (2008).
[44] K. Iwasaki, Y. Takahashi, H. Masai, and T. Fujiwara, “Blue photoluminescence, greenish-blue afterglow and their Ti-concentration dependence in rare earth-free bazirite-type BaZr1-xTixSi3O9,” Optics Express, 17, 18054-62 (2009).
[45] D. Y. Wang, Y. C. Wu, T. M. Chen,“Synthesis, crystal structure, and photoluminescence of a novel blue-green emitting phosphor: BaHfSi3O9:Eu2+,”
Journal of Materials Chemistry, 21, 18261 (2011).
[46] V. Tomkute, A. Katelnikovas, H. Bettentrup, A. Kareiva, and T. Jüstel, “Synthesis and luminescent properties of novel Ba2−xEuxZr2−yHfySi3O12phosphor,” Optical Materials, 33 , 1272-1277(2011).
[47] Y. Jin, Y. Hu, L. Chen, X. Wang, “Luminescence properties of long persistent phosphors BaZrSi3O9:R3+ (R=Eu, Sm, Dy, Tb and Pr) based on host sensitization,” Optical Materials, (2014).
[48] C.-H. Chiang, S.-J. Gong ,H.-Y. Lin, T-S Zhan , and S-Y Chu, “Effects of Sr2+ substitution on photoluminescence characteristics of Ba1-x-ySryZrSi3O9:xEu2+ phosphors,”Journal of Applied Physics, 116 , 223507(2014).
[49] Xin Ding, Ge Zhu, Wanying Geng, Masayoshi Mikami, and Yuhua Wang, “Novel blue and green phosphors obtained from K2ZrSi3O9:Eu2+ compounds with different charge compensation ions for LEDs under near-UV excitation,” Journal of Materials Chemistry C, 3 , 6676(2015)
[50] Jin Young Parka, Kyoo Sung Shimb, Jae Su Yuc, and Hyun Kyoung Yanga, “Cyan-emitting BaZrSi3O9:Eu2+phosphors for near-UV based white light-emitting diodes,” Materials Letters, 173 , 68-71(2016).
[51] Barbara Haferkorn, and Gerd Meyer, “Li2EuSiO4, an Europium(II) Litho-Silicate: Eu[(Li2Si)O4] ,” Zeitschrift für anorganische und allgemeine Chemie , 624 , 1079-1081 (1998).
[52] M. Pardha Saradhi, and U. V. Varadaraju, “Photoluminescence Studies on Eu2+-Activated Li2SrSiO4 a Potential Orange-Yellow Phosphor for Solid-State Lighting,” Chemistry of Materials , 18 , 5267-5272(2006).
[53] Hong He, Renli Fu, Hai Wang, Xiufeng Song, Zhengwei Pan, Xinran Zhao, Xueliang Zhang, and Yongge Cao, “Li2SrSiO4:Eu2+phosphor prepared by the Pechini methodand its application in white light emitting diode,”Journal of Materials Research , 23(12) , 3288-3294(2008).
[54] Xueliang Zhang, Hong He, Zhaosheng Li, and Zhigang Zou,“Photoluminescence studies on Eu2+ and Ce3+-doped Li2SrSiO4,”Journal of Luminescence, 128 , 1876-1879(2008).
[55] Tae-Gon Kim, Hyo-Sug Lee, Chun Che Lin, Taehyung Kim, Ru-Shi Liu, Ting-Shan Chan ,and Seoung-Jae Im,“Effects of additional Ce3+ doping on the luminescence of Li2SrSiO4:Eu2+ yellow phosphor,” Applied Physics Letters, 96 , 061904(2010).
[56] S. M. Levshov, I. V. Berezovskaya, N. P. Efryushina, B. I. Zadneprovskii, V. P. Dotsenko,“Synthesis and luminescence properties of Eu2+-doped Li2SrSiO4,” Inorganic Materials, Volume 47, Issue 3, pp 285-289(2011).
[57] Lei Chen; Anqi Luo, Yao Zhang; Fayong Liu, Yang Jiang, Qingsheng Xu, Xinhui Chen, Qingzhuo Hu, Shi-Fu Chen, Kuo-Ju Chen, and Hao-Chung Kuo,“Optimization of the Single-Phased White Phosphor of Li2SrSiO4: Eu2+, Ce3+ for Light-Emitting Diodes by Using the Combinatorial Approach Assisted with the Taguchi Method,” Journal of Combinatorial Chemistry,(2012)
[58] Panli You,“Effect of Tb3+-Coped Concentration on Properties of Li2SrSiO4:Tb3+ Phosphor,”Advanced Material Research, Vols. 989--994, 437-440(2014).
[59] Y. Li, C. C. Ni, C. C. Lin, F. J. Pan, R. S. Liu , and J. Wang,“Enhancement of UV absorption and near-infrared emission of Er3+ in Li2SrSiO4:Ce3+, Er3+ for Ge solar spectral convertor,” Optical Materials, 36 ,1871-1873(2014).
[60] Jiayu Chen, Chongfeng Guo, Zheng Yang, Ting Li, and Jin Zhao,“Li2SrSiO4:Ce3+, Pr3+ Phosphor with Blue, Red, and Near-Infrared Emissions Used for Plant Growth LED,” Journal American Ceramic Society, 99 [1] , 218–225(2016).
[61] F Wang , B Yang , D Liu , W Ma ,X Chen ,Y Dai,“Influence of vacuum upon preparation and luminescence of Si4+ and Ti4+ codoped Gd2O2S:Eu phosphor,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 126 ,42-46(2014)
[62] N. Lakshminarasimhan, U.V. Varadaraju,“Role of crystallite size on the photoluminescence properties of SrIn2O4:Eu3+ phosphor synthesized by different methods,”Journal of Solid State Chemistry, 181 ,2418-2423(2008).
[63] Huaiyong Li, Xipeng Pu, Jie Yin, Xiaoqin Wang, Shujuan Yao, Hyeon Mi Noh, Jung Hyun Jeong,“Effect of Crystallite Size and Crystallinity on Photoluminescence Properties and Energy Transfer of Y6MoO12:Eu,”Journal American Ceramic Society, 99[3] , 954-961(2016)
[64] Raquel Ovalle, Alejandro Arredondo, Luis Armando Diaz-Torres, Elder de la Rosa,“Concentration and crystallite size dependence of the photoluminescence in YAG:Ce3+ nanophosphor,” Proceedings of SPIE - The International Society for Optical Engineering ,5530,(2004)
[65] Wei-Ning Wang, W. Widiyastuti, Takashi Ogi, I. Wuled Lenggoro, and Kikuo Okuyama,” Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors,” Chemistry of. Materials ,19,1723-1730(2007).
[66] Jing Jia, Aiqin Zhanga , Dongxin Li, Xuguang Liu, Bingshe Xu, Husheng Jia,” Preparation and properties of the flexible remote phosphor film for blue chip-based white LED,” Materials & Design, 102 ,8-13(2016).
[67] 龔軒志,藍綠色矽酸鹽類螢光粉之合成及其應用於高演色性白光LED,成功大學電機工程學系碩士論文 (2014)
[68] 方盈倩,開發照明用螢光體與螢光材料分析,成功大學電機工程學系博士論文 (2011).
[69] 蔡鴻亦,鈣-矽(氧)化物螢光粉之合成及應用於白光 LED 之分層遠距式結構探討,成功大學電機工程學系碩士論文 (2013)
[70] 郭弘毅,釔鋁石榴石結構螢光粉之光學性質及其應用於提升白光發光二極體之演色性,成功大學電機工程學系碩士論文 (2011)
[71] 羅巨澤,高紅光色飽和度Mn4+摻雜螢光體之製備與發光特性鑑定,國立交通大學應用化學研究所碩士論文 (2006)
[72] 劉偉仁,姚中業,黃健豪,鍾淑茹,金風,LED螢光粉技術,五南圖書出版公司 (2014)
校內:2021-07-26公開