簡易檢索 / 詳目顯示

研究生: 陳宥薪
Chen, Yu-Hsin
論文名稱: 合成氮化碳與奈米碳材複合材料之可見光觸媒運用於降解雙酚A與六價鉻
Synthesis of Graphitic Carbon Nitride and Carbonaceous Nanomaterial Composite Visible Light Photocatalysts to Simultaneously Transform Bisphenol A and Cr(VI)
指導教授: 侯文哲
Hou, Wen-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 58
中文關鍵詞: 光催化還原氧化石墨烯氮化碳
外文關鍵詞: Photocatalysis, reduced graphene oxide, graphic carbon nitride
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化碳是一個新興且不含金屬的可見光光催化劑。在本研究中,我們使用尿素當作合成氮化碳的前驅物並且參雜碳奈米材料以形成複合光催化劑。我們比較各種碳奈米材料的參雜對氮化碳增強光反應性的影響。碳奈米材料包含富勒烯,單壁碳奈米碳管,多壁碳奈米碳管,氧化石墨烯,還原氧化石墨烯。在本研究中,氮化碳參雜還原氧化石墨烯在45分鐘可見光照射下可將雙酚A去除~99%。在電化學阻抗分析實驗中,我們發現氮化碳和還原氧化石墨烯的複合材料比其他碳奈米物質與氮化碳複合物有最低的電阻約2500 Ω這使得它減輕電子電洞再結合導致光觸媒有良好光催化性質。在添加自由基清除劑實驗中發現主要去除BPA是超氧自由基的產生。此外,我們還評估了同時降解雙酚A和六價鉻的光催化效率,在此實驗中發現雙酚A在30分鐘內完全移除,六價鉻在60分鐘內可被還原50%。

    關鍵字:光催化、還原氧化石墨烯、氮化碳。

    Graphitic carbon nitride (GCN) is an emerging, metal-free, and visible light photocatalyst. In this work, we use urea as precursor to fabricate GCN (the sample is termed UGCN) and dope with carbonaceous nanomaterials (CNMs) to form a composite photocatalyst. We compare across these various CNMs in terms of their efficacies in enhancing the photoreactivity of GCN. CNMs involve fullerene, single-wall carbon nanotube (SWCNT), multi-wall carbon nanotube (MWCNT), graphene oxide (GO), reduce graphene oxide (rGO). In this work, rGO and UGCN composite photocatalyst has the best photocatalytic efficiency, BPA as a pollutant model, and is ~99% removed in 45 min of visible light irradiation by composite of rGO and UGCN. In electrochemical impedance spectroscopy analysis (EIS), composite of rGO and UGCN have the smallest charge transfer resistance (2,500 Ω) than the other composite of CNMs and UGCN. The introduced CNMs shuttle the photogenerated electron from UGCN, thereby alleviating the electron-hole recombination, resulting composite of rGO and UGCN have excellent photocatalytic reaction. In adding free radical scavengers’ experiment, superoxide radical (O2•−) was produced and played a major role in the removal of BPA. Therefore, we also evaluate photocatalytic efficiency that simultaneously transforms BPA and Cr(VI) (i.e., the binary system). In this work, BPA is completely removed in 30 min and Cr(VI) is 50% reduced in 60 min.

    Keywords: Photocatalysis, reduced graphene oxide, graphic carbon nitride.

    CONTENTS 摘要 I Abstract II 致謝 III List of Tables VII List of Figures VIII Chapter 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Objective 3 Chapter 2 LITERATURE REVIEWS 4 2.1 Properties and application of graphitic carbon nitride 4 2.2 Properties and application of carbonaceous nanomaterials 7 2.3 Photocatalysis involving GCN and carbonaceous nanomaterial composites 8 2.4 The toxicity of BPA 13 2.5 Photocatalytic degradation of BPA 14 Chapter 3 MATERIALS AND METHODS 17 3.1 Experiment materials 17 3.2 Photocatalyst synthesis 17 3.2.1 Synthesis of GCN 17 3.2.2 Synthesis of GO materials 18 3.2.3 Synthesis of UGCN photocatalysts in composites with GO or rGO 18 3.2.4 Synthesis of UGCN and carbonaceous nanomaterial composite photocatalysts 19 3.3 Photoreaction experiment 19 3.4 Chemical analysis 20 3.4.1 BPA measurements 20 3.4.2 Cr(VI) measurements 21 3.4.3 Radical measurements 22 3.5 Characterization of photocatalysts 22 3.5.1 Scanning Electron Microscope (SEM) 22 3.5.2 X-ray Diffraction (XRD) 22 3.5.3 X-ray Photoelectron Spectroscopy (XPS) 23 3.5.4 Photoluminescence (PL) 23 3.5.5 Electrochemical Analysis 23 3.5.6 UV-Visible Absorbance Spectrometry 24 Chapter 4 RESULTS AND DISSCUSSION 25 4.1 Characterization of photocatalysts 25 4.1.1 XRD patterns 25 4.1.2 SEM analysis 26 4.1.3 XPS analysis 28 4.1.4 The UV-visible absorbance spectra 29 4.1.5 The schematic energy level diagram 30 4.2 The effect of precursors of GCN on photoreactivity 31 4.3 Comparing the synthesis procedures of UGCN composite photocatalysts on their photoreactivity 32 4.4 The effect of rGO contents in the UGCN/rGO on their photocatalytic removal of BPA 34 4.5 UGCN composites with different CNMs on the photocatalytic removal of BPA 35 4.6 EIS analysis of photocatalysts 36 4.7 PL analysis of photocatalysts 38 4.8 Comparing the photoreactivity of UGCN/rGO and TiO2 39 4.9 Potential photoreaction mechanism 40 4.10 Simultaneous removal of BPA and Cr(VI) by UGCN/rGO 42 Chapter 5 CONCLUSION AND SUGGESTION 43 5.1 Conclusion 43 5.2 Suggestion 43 SUPPORTING INFORMATION 44 REFERENCE 49

    (1) Sclafani, A.; Palmisano, L.; Schiavello, M. Influence of the Preparation Methods of Titanium Dioxide on the Photocatalytic Degradation of Phenol in Aqueous Dispersion. J. Phys. Chem. 1990, 94 (2), 829–832. https://doi.org/10.1021/j100365a058.
    (2) Okamoto, K.; Yamamoto, Y.; Tanaka, H.; Tanaka, M.; Itaya, A. Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder. BCSJ 1985, 58 (7), 2015–2022. https://doi.org/10.1246/bcsj.58.2015.
    (3) Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry 2004, 32 (1), 33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001.
    (4) Rehman, S.; Ullah, R.; Butt, A. M.; Gohar, N. D. Strategies of Making TiO2 and ZnO Visible Light Active. Journal of Hazardous Materials 2009, 170 (2), 560–569. https://doi.org/10.1016/j.jhazmat.2009.05.064.
    (5) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293 (5528), 269–271. https://doi.org/10.1126/science.1061051.
    (6) Subagio, D. P.; Srinivasan, M.; Lim, M.; Lim, T.-T. Photocatalytic Degradation of Bisphenol-A by Nitrogen-Doped TiO2 Hollow Sphere in a Vis-LED Photoreactor. Applied Catalysis B: Environmental 2010, 95 (3), 414–422. https://doi.org/10.1016/j.apcatb.2010.01.021.
    (7) Ghows, N.; Entezari, M. H. Fast and Easy Synthesis of Core–Shell Nanocrystal (CdS/TiO2) at Low Temperature by Micro-Emulsion under Ultrasound. Ultrasonics Sonochemistry 2011, 18 (2), 629–634. https://doi.org/10.1016/j.ultsonch.2010.08.003.
    (8) Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. Tri-s-Triazine Derivatives. Part I. From Trichloro-Tri-s-Triazine to Graphitic C3N4 Structures. New J. Chem. 2002, 26 (5), 508–512. https://doi.org/10.1039/B111062B.
    (9) Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-Triamino-Tri-s-Triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride:  Synthesis, Structure Determination by X-Ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. J. Am. Chem. Soc. 2003, 125 (34), 10288–10300. https://doi.org/10.1021/ja0357689.
    (10) Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116 (12), 7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075.
    (11) Mao, J.; Peng, T.; Zhang, X.; Li, K.; Ye, L.; Zan, L. Effect of Graphitic Carbon Nitride Microstructures on the Activity and Selectivity of Photocatalytic CO2 Reduction under Visible Light. Catal. Sci. Technol. 2013, 3 (5), 1253–1260. https://doi.org/10.1039/C3CY20822B.
    (12) Dong, G.; Zhang, L. Porous Structure Dependent Photoreactivity of Graphitic Carbon Nitride under Visible Light. J. Mater. Chem. 2011, 22 (3), 1160–1166. https://doi.org/10.1039/C1JM14312C.
    (13) Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation Performance of G-C3N4 Fabricated by Directly Heating Melamine. Langmuir 2009, 25 (17), 10397–10401. https://doi.org/10.1021/la900923z.
    (14) Dong, F.; Wu, L.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S. C. Efficient Synthesis of Polymeric G-C3N4 Layered Materials as Novel Efficient Visible Light Driven Photocatalysts. J. Mater. Chem. 2011, 21 (39), 15171–15174. https://doi.org/10.1039/C1JM12844B.
    (15) Bai, X.; Yan, S.; Wang, J.; Wang, L.; Jiang, W.; Wu, S.; Sun, C.; Zhu, Y. A Simple and Efficient Strategy for the Synthesis of a Chemically Tailored G-C3N4 Material. J. Mater. Chem. A 2014, 2 (41), 17521–17529. https://doi.org/10.1039/C4TA02781G.
    (16) Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. J. Am. Chem. Soc. 2009, 131 (5), 1680–1681. https://doi.org/10.1021/ja809307s.
    (17) Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on G-C3N4-Based Photocatalysts. Applied Surface Science 2017, 391, 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030.
    (18) Chang, C.; Fu, Y.; Hu, M.; Wang, C.; Shan, G.; Zhu, L. Photodegradation of Bisphenol A by Highly Stable Palladium-Doped Mesoporous Graphite Carbon Nitride (Pd/Mpg-C3N4) under Simulated Solar Light Irradiation. Applied Catalysis B: Environmental 2013, 142–143, 553–560. https://doi.org/10.1016/j.apcatb.2013.05.044.
    (19) Wang, Y.; Zhao, X.; Cao, D.; Wang, Y.; Zhu, Y. Peroxymonosulfate Enhanced Visible Light Photocatalytic Degradation Bisphenol A by Single-Atom Dispersed Ag Mesoporous g-C3N4 Hybrid. Applied Catalysis B: Environmental 2017, 211, 79–88. https://doi.org/10.1016/j.apcatb.2017.03.079.
    (20) Samanta, S.; Martha, S.; Parida, K. Facile Synthesis of Au/g-C3N4 Nanocomposites: An Inorganic/Organic Hybrid Plasmonic Photocatalyst with Enhanced Hydrogen Gas Evolution Under Visible-Light Irradiation. ChemCatChem 2014, 6 (5), 1453–1462. https://doi.org/10.1002/cctc.201300949.
    (21) Dong, F.; Zhao, Z.; Sun, Y.; Zhang, Y.; Yan, S.; Wu, Z. An Advanced Semimetal–Organic Bi Spheres–g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification. Environ. Sci. Technol. 2015, 49 (20), 12432–12440. https://doi.org/10.1021/acs.est.5b03758.
    (22) Han, Q.; Hu, C.; Zhao, F.; Zhang, Z.; Chen, N.; Qu, L. One-Step Preparation of Iodine-Doped Graphitic Carbon Nitride Nanosheets as Efficient Photocatalysts for Visible Light Water Splitting. J. Mater. Chem. A 2015, 3 (8), 4612–4619. https://doi.org/10.1039/C4TA06093H.
    (23) Ran, J.; Ma, T. Y.; Gao, G.; Du, X.-W.; Qiao, S. Z. Porous P-Doped Graphitic Carbon Nitride Nanosheets for Synergistically Enhanced Visible-Light Photocatalytic H2 Production. Energy Environ. Sci. 2015, 8 (12), 3708–3717. https://doi.org/10.1039/C5EE02650D.
    (24) Hong, Z.; Shen, B.; Chen, Y.; Lin, B.; Gao, B. Enhancement of Photocatalytic H 2 Evolution over Nitrogen -Deficient Graphitic Carbon Nitride. Journal of Materials Chemistry A 2013, 1 (38), 11754–11761. https://doi.org/10.1039/C3TA12332D.
    (25) Chen, Y.; Li, J.; Hong, Z.; Shen, B.; Lin, B.; Gao, B. Origin of the Enhanced Visible-Light Photocatalytic Activity of CNT Modified g-C3N4 for H2 Production. Phys. Chem. Chem. Phys. 2014, 16 (17), 8106–8113. https://doi.org/10.1039/C3CP55191A.
    (26) Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Surface Charge Modification via Protonation of Graphitic Carbon Nitride (g-C3N4) for Electrostatic Self-Assembly Construction of 2D/2D Reduced Graphene Oxide (RGO)/g-C3N4 Nanostructures toward Enhanced Photocatalytic Reduction of Carbon Dioxide to Methane. Nano Energy 2015, 13, 757–770. https://doi.org/10.1016/j.nanoen.2015.03.014.
    (27) Low, J.; Yu, J.; Ho, W. Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel. J. Phys. Chem. Lett. 2015, 6 (21), 4244–4251. https://doi.org/10.1021/acs.jpclett.5b01610.
    (28) Zhang, R.; Ma, M.; Zhang, Q.; Dong, F.; Zhou, Y. Multifunctional G-C3N4/Graphene Oxide Wrapped Sponge Monoliths as Highly Efficient Adsorbent and Photocatalyst. Applied Catalysis B: Environmental 2018, 235, 17–25. https://doi.org/10.1016/j.apcatb.2018.04.061.
    (29) Liao, G.; Chen, S.; Quan, X.; Yu, H.; Zhao, H. Graphene Oxide Modified G-C 3 N 4 Hybrid with Enhanced Photocatalytic Capability under Visible Light Irradiation. Journal of Materials Chemistry 2012, 22 (6), 2721–2726. https://doi.org/10.1039/C1JM13490F.
    (30) Li, J.; Tang, Y.; Jin, R.; Meng, Q.; Chen, Y.; Long, X.; Wang, L.; Guo, H.; Zhang, S. Ultrasonic-Microwave Assisted Synthesis of GO/g-C3N4 Composites for Efficient Photocatalytic H2 Evolution. Solid State Sciences 2019, 97, 105990. https://doi.org/10.1016/j.solidstatesciences.2019.105990.
    (31) Svoboda, L.; Škuta, R.; Matějka, V.; Dvorský, R.; Matýsek, D.; Henych, J.; Mančík, P.; Praus, P. Graphene Oxide and Graphitic Carbon Nitride Nanocomposites Assembled by Electrostatic Attraction Forces: Synthesis and Characterization. Materials Chemistry and Physics 2019, 228, 228–236. https://doi.org/10.1016/j.matchemphys.2019.02.077.
    (32) Li, Y.; Zhang, H.; Liu, P.; Wang, D.; Li, Y.; Zhao, H. Cross-Linked g-C3N4/RGO Nanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity. Small 2013, 9 (19), 3336–3344. https://doi.org/10.1002/smll.201203135.
    (33) Ai, B.; Duan, X.; Sun, H.; Qiu, X.; Wang, S. Metal-Free Graphene-Carbon Nitride Hybrids for Photodegradation of Organic Pollutants in Water. Catalysis Today 2015, 258, 668–675. https://doi.org/10.1016/j.cattod.2015.01.024.
    (34) Yuan, B.; Wei, J.; Hu, T.; Yao, H.; Jiang, Z.; Fang, Z.; Chu, Z. Simple Synthesis of G-C3N4/RGO Hybrid Catalyst for the Photocatalytic Degradation of Rhodamine B. Chinese Journal of Catalysis 2015, 36 (7), 1009–1016. https://doi.org/10.1016/S1872-2067(15)60844-0.
    (35) Aleksandrzak, M.; Kukulka, W.; Mijowska, E. Graphitic Carbon Nitride/Graphene Oxide/Reduced Graphene Oxide Nanocomposites for Photoluminescence and Photocatalysis. Applied Surface Science 2017, 398, 56–62. https://doi.org/10.1016/j.apsusc.2016.12.023.
    (36) Zhang, X.; Jia, C.; Xue, Y.; Yang, P. Fabrication of RGO/g-C 3 N 4 Composites via Electrostatic Assembly towards Charge Separation Control. RSC Advances 2017, 7 (69), 43888–43893. https://doi.org/10.1039/C7RA07706H.
    (37) Gu, Y.; Yu, Y.; Zou, J.; Shen, T.; Xu, Q.; Yue, X.; Meng, J.; Wang, J. The Ultra-Rapid Synthesis of RGO/g-C3N4 Composite via Microwave Heating with Enhanced Photocatalytic Performance. Materials Letters 2018, 232, 107–109. https://doi.org/10.1016/j.matlet.2018.08.077.
    (38) Yuan, D.; Huang, W.; Chen, X.; Li, Z.; Ding, J.; Wang, L.; Wan, H.; Dai, W.-L.; Guan, G. Introduction of In-Plane π-Conjugated Heterojunction via RGO Modulation: A Promising Approach to Enhance Photoexcited Charge Separation and Transfer of g-C3N4. Applied Surface Science 2019, 489, 658–667. https://doi.org/10.1016/j.apsusc.2019.05.303.
    (39) Pawar, R. C.; Khare, V.; Lee, C. S. Hybrid Photocatalysts Using Graphitic Carbon Nitride/Cadmium Sulfide/Reduced Graphene Oxide (g-C3N4/CdS/RGO) for Superior Photodegradation of Organic Pollutants under UV and Visible Light. Dalton Trans. 2014, 43 (33), 12514–12527. https://doi.org/10.1039/C4DT01278J.
    (40) Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Carbon Nitride–Aromatic Diimide–Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. J. Am. Chem. Soc. 2016, 138 (31), 10019–10025. https://doi.org/10.1021/jacs.6b05806.
    (41) Ge, L.; Han, C. Synthesis of MWNTs/g-C3N4 Composite Photocatalysts with Efficient Visible Light Photocatalytic Hydrogen Evolution Activity. Applied Catalysis B: Environmental 2012, 117–118, 268–274. https://doi.org/10.1016/j.apcatb.2012.01.021.
    (42) Bai, Z.; Bai, Z.; Gao, T.; Bai, Z.; Zhu, Y. Preparation Effects on the Morphology and Photocatalytic Properties of Carbon Nitride Nanotubes. Results in Physics 2019, 13, 102254. https://doi.org/10.1016/j.rinp.2019.102254.
    (43) Xiang, Q.; Yu, J.; Jaroniec, M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. J. Phys. Chem. C 2011, 115 (15), 7355–7363. https://doi.org/10.1021/jp200953k.
    (44) Ding, F.; Zhao, Z.; Yang, D.; Zhao, X.; Chen, Y.; Jiang, Z. One-Pot Fabrication of g-C3N4/MWCNTs Nanocomposites with Superior Visible-Light Photocatalytic Performance. Ind. Eng. Chem. Res. 2019, 58 (9), 3679–3687. https://doi.org/10.1021/acs.iecr.8b05293.
    (45) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Metal-Free Efficient Photocatalyst for Stable Visible Water Splitting via a Two-Electron Pathway. Science 2015, 347 (6225), 970–974. https://doi.org/10.1126/science.aaa3145.
    (46) Chen, Y.; Li, J.; Hong, Z.; Shen, B.; Lin, B.; Gao, B. Origin of the Enhanced Visible-Light Photocatalytic Activity of CNT Modified g-C 3 N 4 for H 2 Production. Physical Chemistry Chemical Physics 2014, 16 (17), 8106–8113. https://doi.org/10.1039/C3CP55191A.
    (47) Zhao, S.; Guo, T.; Li, X.; Xu, T.; Yang, B.; Zhao, X. Carbon Nanotubes Covalent Combined with Graphitic Carbon Nitride for Photocatalytic Hydrogen Peroxide Production under Visible Light. Applied Catalysis B: Environmental 2018, 224, 725–732. https://doi.org/10.1016/j.apcatb.2017.11.005.
    (48) Liu, J.; Song, Y.; Xu, H.; Zhu, X.; Lian, J.; Xu, Y.; Zhao, Y.; Huang, L.; Ji, H.; Li, H. Non-Metal Photocatalyst Nitrogen-Doped Carbon Nanotubes Modified Mpg-C3N4: Facile Synthesis and the Enhanced Visible-Light Photocatalytic Activity. Journal of Colloid and Interface Science 2017, 494, 38–46. https://doi.org/10.1016/j.jcis.2017.01.010.
    (49) Xu, Y.; Xu, H.; Wang, L.; Yan, J.; Li, H.; Song, Y.; Huang, L.; Cai, G. The CNT Modified White C3N4 Composite Photocatalyst with Enhanced Visible-Light Response Photoactivity. Dalton Trans. 2013, 42 (21), 7604–7613. https://doi.org/10.1039/C3DT32871F.
    (50) Li, Y.; Zhang, J.; Wang, Q.; Jin, Y.; Huang, D.; Cui, Q.; Zou, G. Nitrogen-Rich Carbon Nitride Hollow Vessels: Synthesis, Characterization, and Their Properties. J. Phys. Chem. B 2010, 114 (29), 9429–9434. https://doi.org/10.1021/jp103729c.
    (51) Martin, D. J.; Reardon, P. J. T.; Moniz, S. J. A.; Tang, J. Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System. J. Am. Chem. Soc. 2014, 136 (36), 12568–12571. https://doi.org/10.1021/ja506386e.
    (52) Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Advanced Materials 2015, 27 (13), 2150–2176. https://doi.org/10.1002/adma.201500033.
    (53) Li, X.; Hartley, G.; Ward, A. J.; Young, P. A.; Masters, A. F.; Maschmeyer, T. Hydrogenated Defects in Graphitic Carbon Nitride Nanosheets for Improved Photocatalytic Hydrogen Evolution. J. Phys. Chem. C 2015, 119 (27), 14938–14946. https://doi.org/10.1021/acs.jpcc.5b03538.
    (54) Yue, B.; Li, Q.; Iwai, H.; Kako, T.; Ye, J. Hydrogen Production Using Zinc-Doped Carbon Nitride Catalyst Irradiated with Visible Light. Science and Technology of Advanced Materials 2011, 12 (3), 034401. https://doi.org/10.1088/1468-6996/12/3/034401.
    (55) Hu, S.; Jin, R.; Lu, G.; Liu, D.; Gui, J. The Properties and Photocatalytic Performance Comparison of Fe3+-Doped g-C3N4 and Fe2O3/g-C3N4 Composite Catalysts. RSC Adv. 2014, 4 (47), 24863–24869. https://doi.org/10.1039/C4RA03290J.
    (56) Lan, Y.; Li, Z.; Li, D.; Xie, W.; Yan, G.; Guo, S. Visible-Light Responsive Z-Scheme Bi@β-Bi2O3/g-C3N4 Heterojunction for Efficient Photocatalytic Degradation of 2,3-Dihydroxynaphthalene. Chemical Engineering Journal 2020, 392, 123686. https://doi.org/10.1016/j.cej.2019.123686.
    (57) Kang, Y.; Yang, Y.; Yin, L.-C.; Kang, X.; Liu, G.; Cheng, H.-M. An Amorphous Carbon Nitride Photocatalyst with Greatly Extended Visible-Light-Responsive Range for Photocatalytic Hydrogen Generation. Advanced Materials 2015, 27 (31), 4572–4577. https://doi.org/10.1002/adma.201501939.
    (58) Xu, Y.; Kraft, M.; Xu, R. Metal-Free Carbonaceous Electrocatalysts and Photocatalysts for Water Splitting. Chemical Society Reviews 2016, 45 (11), 3039–3052. https://doi.org/10.1039/C5CS00729A.
    (59) Yin, S.; Han, J.; Zhou, T.; Xu, R. Recent Progress in G-C3N4 Based Low Cost Photocatalytic System: Activity Enhancement and Emerging Applications. Catal. Sci. Technol. 2015, 5 (12), 5048–5061. https://doi.org/10.1039/C5CY00938C.
    (60) Wang, R.; Li, H.; Sun, H. Bismuth: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health 2019, 415–423. https://doi.org/10.1016/B978-0-12-409548-9.11870-6.
    (61) Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Graphene Oxide as a Structure-Directing Agent for the Two-Dimensional Interface Engineering of Sandwich-like Graphene–g-C 3 N 4 Hybrid Nanostructures with Enhanced Visible-Light Photoreduction of CO 2 to Methane. Chemical Communications 2015, 51 (5), 858–861. https://doi.org/10.1039/C4CC08996K.
    (62) Yang, K.; Zhu, L.; Xing, B. Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials. Environ. Sci. Technol. 2006, 40 (6), 1855–1861. https://doi.org/10.1021/es052208w.
    (63) Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Advanced Science 2018, 5 (1), 1700275. https://doi.org/10.1002/advs.201700275.
    (64) Liu, L.; Zhu, Y.-P.; Su, M.; Yuan, Z.-Y. Metal-Free Carbonaceous Materials as Promising Heterogeneous Catalysts. ChemCatChem 2015, 7 (18), 2765–2787. https://doi.org/10.1002/cctc.201500350.
    (65) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666–669. https://doi.org/10.1126/science.1102896.
    (66) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Reviews of Modern Physics 2009, 81, 109–162. https://doi.org/10.1103/RevModPhys.81.109.
    (67) Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-Based Semiconductor Photocatalysts. Chem. Soc. Rev. 2012, 41 (2), 782–796. https://doi.org/10.1039/C1CS15172J.
    (68) Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano 2010, 4 (1), 380–386. https://doi.org/10.1021/nn901221k.
    (69) Ahmmad, B.; Kusumoto, Y.; Somekawa, S.; Ikeda, M. Carbon Nanotubes Synergistically Enhance Photocatalytic Activity of TiO2. Catalysis Communications 2008, 9 (6), 1410–1413. https://doi.org/10.1016/j.catcom.2007.12.003.
    (70) Xia, X.-H.; Jia, Z.-J.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L.-L. Preparation of Multi-Walled Carbon Nanotube Supported TiO2 and Its Photocatalytic Activity in the Reduction of CO2 with H2O. Carbon 2007, 45 (4), 717–721. https://doi.org/10.1016/j.carbon.2006.11.028.
    (71) Long, Y.; Lu, Y.; Huang, Y.; Peng, Y.; Lu, Y.; Kang, S.-Z.; Mu, J. Effect of C60 on the Photocatalytic Activity of TiO2 Nanorods. J. Phys. Chem. C 2009, 113 (31), 13899–13905. https://doi.org/10.1021/jp902417j.
    (72) Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic Carbon-Nanotube–TiO2 Composites. Advanced Materials 2009, 21 (21), 2233–2239. https://doi.org/10.1002/adma.200802738.
    (73) Christoforidis, K. C.; Syrgiannis, Z.; La Parola, V.; Montini, T.; Petit, C.; Stathatos, E.; Godin, R.; Durrant, J. R.; Prato, M.; Fornasiero, P. Metal-Free Dual-Phase Full Organic Carbon Nanotubes/g-C3N4 Heteroarchitectures for Photocatalytic Hydrogen Production. Nano Energy 2018, 50, 468–478. https://doi.org/10.1016/j.nanoen.2018.05.070.
    (74) Staples, C. A.; Dome, P. B.; Klecka, G. M.; Oblock, S. T.; Harris, L. R. A Review of the Environmental Fate, Effects, and Exposures of Bisphenol A. Chemosphere 1998, 36 (10), 2149–2173. https://doi.org/10.1016/S0045-6535(97)10133-3.
    (75) Mountfort, K. A.; Kelly, J.; Jickells, S. M.; Castle, L. Investigations into the Potential Degradation of Polycarbonate Baby Bottles during Sterilization with Consequent Release of Bisphenol A. Food Addit Contam 1997, 14 (6–7), 737–740. https://doi.org/10.1080/02652039709374584.
    (76) Corrales, J.; Kristofco, L. A.; Steele, W. B.; Yates, B. S.; Breed, C. S.; Williams, E. S.; Brooks, B. W. Global Assessment of Bisphenol A in the Environment. Dose Response 2015, 13 (3). https://doi.org/10.1177/1559325815598308.
    (77) Moreman, J.; Lee, O.; Trznadel, M.; David, A.; Kudoh, T.; Tyler, C. R. Acute Toxicity, Teratogenic, and Estrogenic Effects of Bisphenol A and Its Alternative Replacements Bisphenol S, Bisphenol F, and Bisphenol AF in Zebrafish Embryo-Larvae. Environ. Sci. Technol. 2017, 51 (21), 12796–12805. https://doi.org/10.1021/acs.est.7b03283.
    (78) Alexander, H. C.; Dill, D. C.; Smith, L. W.; Guiney, P. D.; Dorn, P. Bisphenol a: Acute Aquatic Toxicity. Environmental Toxicology and Chemistry 1988, 7 (1), 19–26. https://doi.org/10.1002/etc.5620070104.
    (79) Richter, C. A.; Birnbaum, L. S.; Farabollini, F.; Newbold, R. R.; Rubin, B. S.; Talsness, C. E.; Vandenbergh, J. G.; Walser-Kuntz, D. R.; vom Saal, F. S. In Vivo Effects of Bisphenol A in Laboratory Rodent Studies. Reprod Toxicol 2007, 24 (2), 199–224. https://doi.org/10.1016/j.reprotox.2007.06.004.
    (80) Kajta, M.; Wójtowicz, A. K. Impact of Endocrine-Disrupting Chemicals on Neural Development and the Onset of Neurological Disorders. Pharmacol. Rep 2013, 65 (6), 1632–1639. https://doi.org/10.1016/S1734-1140(13)71524-X.
    (81) Shankar, A.; Teppala, S.; Sabanayagam, C. Urinary Bisphenol a Levels and Measures of Obesity: Results from the National Health and Nutrition Examination Survey 2003-2008. ISRN Endocrinol 2012, 2012, 965243. https://doi.org/10.5402/2012/965243.
    (82) Melzer David; Osborne Nicholas J.; Henley William E.; Cipelli Riccardo; Young Anita; Money Cathryn; McCormack Paul; Luben Robert; Khaw Kay-Tee; Wareham Nicholas J.; Galloway Tamara S. Urinary Bisphenol A Concentration and Risk of Future Coronary Artery Disease in Apparently Healthy Men and Women. Circulation 2012, 125 (12), 1482–1490. https://doi.org/10.1161/CIRCULATIONAHA.111.069153.
    (83) Shankar, A.; Teppala, S. Relationship between Urinary Bisphenol A Levels and Diabetes Mellitus. J Clin Endocrinol Metab 2011, 96 (12), 3822–3826. https://doi.org/10.1210/jc.2011-1682.
    (84) Ohko, Y.; Ando, I.; Niwa, C.; Tatsuma, T.; Yamamura, T.; Nakashima, T.; Kubota, Y.; Fujishima, A. Degradation of Bisphenol A in Water by TiO2 Photocatalyst. Environ. Sci. Technol. 2001, 35 (11), 2365–2368. https://doi.org/10.1021/es001757t.
    (85) Guo, C.; Ge, M.; Liu, L.; Gao, G.; Feng, Y.; Wang, Y. Directed Synthesis of Mesoporous TiO2 Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environ. Sci. Technol. 2010, 44 (1), 419–425. https://doi.org/10.1021/es9019854.
    (86) Liu, C.; Yue, M.; Liu, L.; Rui, Y.; Cui, W. A Separation-Free 3D Network ZnO/RGO–RGH Hydrogel: Adsorption Enriched Photocatalysis for Environmental Applications. RSC Advances 2018, 8 (40), 22402–22410. https://doi.org/10.1039/C8RA03873B.
    (87) Katsumata, H.; Higashi, F.; Kobayashi, Y.; Tateishi, I.; Furukawa, M.; Kaneco, S. Dual-Defect-Modified Graphitic Carbon Nitride with Boosted Photocatalytic Activity under Visible Light. Scientific Reports 2019, 9 (1), 14873. https://doi.org/10.1038/s41598-019-49949-6.
    (88) Dimitroula, H.; Daskalaki, V. M.; Frontistis, Z.; Kondarides, D. I.; Panagiotopoulou, P.; Xekoukoulotakis, N. P.; Mantzavinos, D. Solar Photocatalysis for the Abatement of Emerging Micro-Contaminants in Wastewater: Synthesis, Characterization and Testing of Various TiO2 Samples. Applied Catalysis B: Environmental 2012, 117–118, 283–291. https://doi.org/10.1016/j.apcatb.2012.01.024.
    (89) Guo, X.-J.; Zhen, M.; Liu, H.; Liu, L. BiOBr–BiOI Microsphere Assembled with Atom-Thick Ultrathin Nanosheets and Its High Photocatalytic Activity. RSC Adv. 2015, 5 (31), 24777–24782. https://doi.org/10.1039/C5RA01086A.
    (90) Hou, W.-C.; Wang, Y.-S. Photocatalytic Generation of H2O2 by Graphene Oxide in Organic Electron Donor-Free Condition under Sunlight. ACS Sustainable Chem. Eng. 2017, 5 (4), 2994–3001. https://doi.org/10.1021/acssuschemeng.6b02635.
    (91) Urone, P. F. Stability of Colorimetric Reagent for Chromium, s-Diphenylcarbazide, in Various Solvents. Anal. Chem. 1955, 27 (8), 1354–1355. https://doi.org/10.1021/ac60104a048.
    (92) Sutherland, M. W.; Learmonth, B. A. The Tetrazolium Dyes MTS and XTT Provide New Quantitative Assays for Superoxide and Superoxide Dismutase. Free Radic. Res. 1997, 27 (3), 283–289. https://doi.org/10.3109/10715769709065766.
    (93) Yu, J.; Ma, T.; Liu, G.; Cheng, B. Enhanced Photocatalytic Activity of Bimodal Mesoporous Titania Powders by C60 Modification. Dalton Trans. 2011, 40 (25), 6635–6644. https://doi.org/10.1039/C1DT10274E.
    (94) Chai, B.; Liao, X.; Song, F.; Zhou, H. Fullerene Modified C 3 N 4 Composites with Enhanced Photocatalytic Activity under Visible Light Irradiation. Dalton Transactions 2014, 43 (3), 982–989. https://doi.org/10.1039/C3DT52454J.
    (95) Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. physica status solidi (b) 1966, 15 (2), 627–637. https://doi.org/10.1002/pssb.19660150224.
    (96) Zhang, Y.; Liu, J.; Wu, G.; Chen, W. Porous Graphitic Carbon Nitride Synthesized via Direct Polymerization of Urea for Efficient Sunlight-Driven Photocatalytic Hydrogen Production. Nanoscale 2012, 4 (17), 5300–5303. https://doi.org/10.1039/C2NR30948C.
    (97) Factorovich, M.; Guz, L.; Candal, R. N- TiO2 : Chemical Synthesis and Photocatalysis https://www.hindawi.com/journals/apc/2011/821204/ (accessed Apr 29, 2020). https://doi.org/10.1155/2011/821204.
    (98) Nawawi, W. I.; Nawi, M. A. Carbon Coated Nitrogen Doped P25 for the Photocatalytic Removal of Organic Pollutants under Solar and Low Energy Visible Light Irradiations. Journal of Molecular Catalysis A: Chemical 2014, 383–384, 83–93. https://doi.org/10.1016/j.molcata.2013.11.030.
    (99) Yin, M.; Li, Z.; Kou, J.; Zou, Z. Mechanism Investigation of Visible Light-Induced Degradation in a Heterogeneous TiO2/Eosin Y/Rhodamine B System. Environ. Sci. Technol. 2009, 43 (21), 8361–8366. https://doi.org/10.1021/es902011h.

    無法下載圖示 校內:2025-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE