| 研究生: |
陳元斌 Chen, Yuan-Bin |
|---|---|
| 論文名稱: |
微波介電材料及薄膜應用之研究 Study of Microwave Dielectric Materials and Thin Film Applications |
| 指導教授: |
黃正亮
Huang, Cheng-Liang 魏炯權 Wei, Chung-Chuang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 微波 |
| 外文關鍵詞: | microwave |
| 相關次數: | 點閱:82 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微波介電材料所製作之介電共振器具有高介電常數,高溫度穩定係數及低損失 因子等特性,適合應用於微波濾波器、震盪器、天線與微波積體電路中。近年來由於高頻通訊元件快速之發展,元件之輕薄短小為其重要之研究目標。就縮小體積之多層 陶瓷濾波器而言,降低燒結溫度便為發展介電材料之重要趨勢。此外,介電材料之積 體化也亦為實現微波高頻元件之重要課題之一。本論文針對上述之方向做了下列二大部分進行探討與研究:
一、高品質因子,高溫度穩定性與高介電常數之微波陶瓷介電材料備製
[a] La(Mg1/2Ti1/2)O3約有29.8的介電常數,而Qxf值有75500 GHz,而f 值約有-65ppm/oC.嘗試在特性優良之La(Mg1/2Ti1/2)O3介電材料中,加入不同燒結促進劑,CuO,B2O3去降低其燒結溫度,以改善介電特性並達到降低燒結溫度之目的。
[b] 而CaTiO3介電常數 > 200, Qf < 1000, f > 1100ppm/C,利用正f的特性與La(Mg1/2Ti1/2)O3相混,調整其共振頻率溫度係數,用以改善La(Mg1/2Ti1/2)O3的微波特性以及探討其對於微波特性之影響。
二、MgTiO3薄膜特性的分析及高頻應用
[a] 利用自製之MgTiO3靶材以射頻磁控濺鍍法進行薄膜之製作,在不同之製程參數下,製作高品質之介電薄膜,經由進行各種不同之薄膜分析技術,以進行物理特性及電學特性之研究。
[b] 並以MgTiO3為介電材料製作MIM薄膜電容,量測高頻特性。
Due to the development in mobile communication, mobile telephone systems, as well as in satellite broadcasting systems was rapidly, how to design the high-quality devices applied in analog circuits are the most important homework. There are two primary branches in this research. One part is to develop the dielectric ceramic systems that exhibit great dielectric properties. The other part is to design and realize the multilayer dielectric filters.
1.Study and fabrications of microwave dielectric resonators
(a) La(Mg1/2Ti1/2)O3 has a high dielectric constant ( ~ 29), a high quality factor (Qxf value ~75500 GHz) and a negative f value (-65 ppm/oC). The crystal structure of La(Mg1/2Ti1/2)O3 was reported to be cubic. It has found many applications in microwave systems such as in temperature-compensation-type capacitors, resonators and antennas. However, the sintering temperatures for al cases were as high as 1500 ~ 1600 oC. In this studies, the effect of CuO and B2O3 addition on the sintering temperatures of La(Mg1/2Ti1/2)O3 ceramics has been investigated.
(b) La(Mg1/2Ti1/2)O3 has a high dielectric constant ( ~ 29), a high quality factor (Q×f value ~75500 GHz) and a negative f value (-65ppm/oC). The crystal structure of La(Mg1/2Ti1/2)O3 was reported to be cubic. CaTiO3 ( > 200, Qf < 1000, f > 1100ppm/C ) with a positive f value was introduced to into the mixture form a solid solution xLa(Mg1/2Ti1/2)O3-(1-x)CaTiO3 to compensate for the f value.
2. MgTiO3 thin film electrical characteristics and the application
(a) A MgTiO3 target was prepared and used for deposition. MgTiO3 thin films were deposited at different processing parameters. The dependence of the physical and electrical characteristics on rf power, substrate temperature and Ar/O2 ratios were also investigate. MgTiO3 thin films were fabricated by rf magnetron sputtering have been researched. An MgTiO3 target was prepared and used for deposition. MgTiO3 thin films were deposited at different processing parameters. The dependence of the physical and electrical characteristics on rf power, substrate temperature and Ar/O2 ratios were also investigate.
(b) Metal-insulator-metal (MIM) capacitors are fabricated using sputtered MgTiO3 with Al for top and bottom electrodes. High-capacitance densities from 3.1 to 5.49 fF/μm2 have been achieved while maintaining the leakage current densities 3.09×10-8 A/cm2 within the normal circuit bias conditions. A guideline for the insulator thickness and its dielectric constant has been obtained by analyzing the tradeoff between the linearity coefficient and the capacitance density.
[1.1] R. D. Richtmyer, J. Appl. Phys., 10 (1939) 391-398.
[1.2] L. Chai, M. A. Akbas, P. K. Davies and J. B. Parise, Mat. Res. Bull, 33(9) (1998) 1261-69.
[1.3] M. Furuya and A. Ochi, Jpn. J. Appl. Phys., 33 (1994) 5482-87.
[1.4] O. Renount, J. P. Boilt and F. Chaput, J. Am. Ceram. Soc., 75 (1992) 3337.
[1.5] S. Katayama, I. Yoshinaga, N. Yamada and T. Nagai, J. Am. Ceram. Soc., 79 (1996) 2059.
[1.6] V. M. Ferreir, F. Azough, I. L. Baptisa and R. Freer, Ferroelectrics, 133(1992)127.
[1.7] H. Yamamoto, A. Koga, S. Shibagaki and N. Ichinose, J. Ceram. Soc. Jpn., 106 (1998)339.
[1.8] C. M. Cheng, C. F. Yang, and S. H. Lo, Jpn. J. Appl. Phys., 36 L1604.
[1.9] C. C. Lee and P. Lin, Jpn. J. Appl. Phys., 37 (1998) 6048-6054.
[1.10] T. Takada, S. F. Wang, and Syoshikawa, S. T. Jang and R. E. Newnham, J. Am. Ceram. Soc., 77(1994) 1909.
[1.11]R. Kudesia, A. E. Mchale and R. L. Snyder, J. Am. Ceram. Soc., 77(1994) 3215.
[1.12] K. R. Han, J. W. Jang, S. Y. Cho, D. Y. Jeong and K. S. Hong, J. Am. Ceram. Soc., 81 (1998) 1209.
[1.13] S. Y. Cho, I. T. Kim and K. S. Hong, J. Mater. Res., 14 (1999) 114.
[1.14] D. G. Lim, B. H. Kim, T. G. Kim and H. J. Jung, Materials Research Bulletin, 34 (1999) 1577.
[2.1] W. D. Kingery, H. K. Bowen And D.R. Uhlmann, Introduction to Ceramics, 2nd Edn (J. Wiley, New York, 1976) 461.
[2.2] Kajfez and P. Guillon:Dielectric Resonators (Artech House, Massachusetts, 1986) 345.
[2.3] B. A. Movchan and A. V. Demshishin, Fizika Metal, 28 (1969) 653.
[2.4] J. A. Thornton, J. Vac. Sci. Technol. A 4, (1986) 3059-3065.
[2.5] R. C. Ross and R. Messier, J. Appl. Phys., 52 (1981) 5329-5339.
[2.6] R. Messier and R. C. Ross, J. Appl. Phys., 53 (1982) 6220-5225.
[2.7] R. Messier and R. C. Ross, J. Vac. Sci. Technol. A2 (1984) 500.
[2.8] S. M. Sze, Physics of Semiconductor Devices, 2nd, Wiley, New York, (1981).
[2.9] J. O’Dwyer, Oxford, England, (1973).
[2.10] P. Li and T. M. Lu, Physical Review B, 43 (1991) 14261-14264.
[2.11] T. Mihara and H. Watanbe, Jpn. J. Appl. Phys., 34 (1995) 5664.
[2.12] A. Grove, B. E. Deal, E. H. Show and C. T. Sah, Solid-State Electronics, 18 (1965) 145-163.
[2.13] D. G. Ong, Modern MOS Technology: Process, Devices and Design, McGraw-Hill Inc., (1994).
[3.1] S. B. Desu and H. M. O’Bryan, J. Am. Ceram. Soc., 68 (1985) 546.
[3.2] D. A. Sagala and S. Nambu, J. Am. Ceram. Soc. 75 (1992) 2573.
[3.3] K. Kageyama, J. Am. Ceram., Soc. 75 (1992) 1767.
[3.4] S-Y. Cho, C-H Kim and D-W. Kim: Materials Research Society. 14 (1999) 2484.
[3.5] T. Takada, S. F. Wang, S. Yoshikawa, S-J. Jang and R. E. Newnham: J. Am. Ceram. Soc., 77 (1994) 1909.
[3.6] T. Takada, S. F. Wang, S. Yoshikawa, S-J. Jang and R. E. Newnham, J. Am. Ceram. Soc., 77 (1994) 2485.
[3.7] S. Hirno, T. Hayashi and A. Hattori, J. Am. Ceram. Soc., 74 (1991) 1320.
[3.8] V. Tolmer and G. Desgardin: J. Am. Ceram. Soc., 80 (1997) 1981.
[3.9] B. W. Hakki and P. D. Coleman, IEEE Trans. Microwave Theory & Tech., 8 (1960) 402.
[4.1] T. Takada, S. F. Wang, and S. Yoshikawa, S. J. Yang and R. E. Newnham, J. Am. Ceram. Soc., 77 (1994) 1909.
[4.2] R. J. Cava, W. F. Peck Jr., J. J. Krajewski, G. L. Reberts and B. P. Barber, Appl. Phys. Letter, 70 (1997) 1396.
[4.3] G. C. Ling, R. S. Withers, B. F. Cole and N. Newman, IEEE Trans. Microwave Theory & Tech., 42 (1994) 34.
[4.4] D. E. Oates and A. C. Anderson: IEEE Trans. Magn., 28 (1991) 867.
[4.5] Ceramic Engineering Handbook, Ceramic Society of Japan (Gihodo, Tokyo, 1989) 1885.
[4.6] K. Wakino: Ferroelectries 91 (1989) 69.
[4.7] V. M. Ferreir and J. L. Baptista: J. Mat. Res., 12 (1997) 3293.
[4.8] V. M. Ferreir, F. Azough, I. L. Baptista and R. Freer, Ferroelectric 133 (1992) 127.
[4.9] S. B. Desu and H. M. O’Bryan, J. Am. Ceram. Soc., 68 (1985) 546.
[4.10] D.A. Sagada and S. Nambu, J. Am. Ceram. Soc., 75 (1992) 2573.
[4.11] Y. Syono, S. Akimoro, Y. Ishikawa and Y. Endoh: J. Phys. Chem. Solid 30 (1969) 1665.
[4.12] J. Zng, H. Wang, S. Song, Q. Zhang, J. Cheng, S. Shang and M. Wang, J. Crystal Growth 178 (1997) 355.
[4.13] J. Lee and C. W. Choi, Jan. J. Appl. Phys., 38 (1999) 3651.
[4.14] C. W. Choi, Y. U. Kwon, J. Lee, J. Kor. Phys. Soc., 32 (1998) 1417.
[4.15] P. Bhattacharya, T. Komeda, K. Park and Y. Nishioika, Jan. J. Appl. Phys., 32 (1993) 4103.
[5.1] S. Decoutere, F. Vleugels, R. Kuhn, R. Loo, M. Caymax, S. Jenei, J. Croon, S. Van Huylenbroeck, M. Da Rold, E. Rosseel, and P. Coppens, BCTM 106-109 (2000).
[5.2] M. Racanelli, Z. Zhang, J. Zheng, A. Kar-Roy, P. Joshi, A. Kalburge, L. Nathawad, M. Todd, C. Ukah, C. Hu, C. Copton, K. Schuegraf, BC35 (1999) 125-128.
[5.3] A. Kar-Roy, C. Hu, M. Racanelli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, J. Zheng, A. Zhang, and A. Yin, IITC 245-247 (1999).
[5.4] P. Zurcher, P. Alluri, P. Chu, P. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M. Petras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Stipanuk, S. Straub, T. Sparks, IEDM Tech. Dig. (2000) 153-156.
[5.5] M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, IEDM, (2000) 157-160.
[5.6] J. A. Babcock, S. G. Balster, A. pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-kareh, IEEE Electron Device Lett., 22 (2001) 230-232.
[5.7] S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh, and J. Liu, IEEE Electron Device Lett., 23 (2002) 185-187.
[5.8] Ceramic Engineering Handbook, Ceramic Society of Japan (Gihodo, Tokyo, 1989) p.1885.
[5.9] K. Wakino: Ferroelectries 91 (1989) 69.
[5.10] V. M. Ferreir and J. L. Baptista, J. Mat. Res. 12 (1997) 3293.
[5.11] M. C. King, Z. M. Lai, C. H. Huang, C. F. Lee, D. S. Yu, C. M. Huang, Y. Chang, and A. Chin, IEEE RF-IC symp. Dig., Jun. (2004) 171-174.
[5.12] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin, IEEE MTT-S In. Microw. Symp. Dig., vol. 2, Jun. (2001) 763-766.
[5.13] H. Ng, K. W. Chew, J. X. Li, T. T. Tjoa, L. N. Goh, and S. F. Chu, IEDM Tech. Dig. (2002) 241-244.
[5.14] S. B. Chen, J. H. Chou, A. Chin, J. C. Hsieh, and J. Liu, IEEE MTT-S Int. Microwave Symp., 1 (2002) 201-204.
[5.15]. D. M. Pozar, Microwave Engineering. New York: Wiely, 1998.
[5.16].C. H. Huang, M. Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, IEEE MTT-S Int. Microwave Symp., June 2003.
[5.17].IC-CAP Manual, 1998. Hewlett Packard.