簡易檢索 / 詳目顯示

研究生: 林天柱
Lin, Tien-Chu
論文名稱: 內衝式霧化噴嘴應用於金屬粉末製程之研究
Production of Metal Powder by Atomization Processes with Internal Impinging Mechanism
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 228
中文關鍵詞: 內衝擊霧化PDPA田口式分級PIV金屬粉末
外文關鍵詞: atomization, classification, metal powder, internal impingement, Taguchi method, PDPA, PIV
相關次數: 點閱:113下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以實驗方法探討具內部衝擊機制噴嘴之霧化特性,並探討應用於水及熔融金屬之霧化以產生超微粒子之方法。噴嘴霧化特性以Spraytec粒徑分析儀,相差都卜勒粒子分析儀(PDPA),及粒子影像測速儀(PIV)量測。水模實驗結果顯示,當氣液質量比為0.14時,霧化平均粒度SMD小於10微米。且霧化平均粒度於低壓操作下即可達到4微米,這顯示了本型噴嘴在低壓下即擁有良好的霧化效能,此特性並非一般設計之噴嘴可輕易達成。實驗結果亦顯示,增加內部衝擊角度及噴口直徑可降低霧化粒度,這亦是本型噴嘴霧化效能的控制參數。另外本研究亦使用操作參數及噴嘴尺度成功地推導出噴霧粒徑實用之經驗公式。另一方面,瞬時影像流場之量測結果顯示,具內部衝擊機制之噴嘴所產生之噴霧呈現間歇式噴霧現象,而不具內部衝擊機制之噴嘴其噴霧在軸向呈現大尺度之正弦波結構。這是因為噴嘴內部衝擊機制增強液相與氣相之混合,並且擴展到下游之噴霧結構上。因此,具內部衝擊機制之噴嘴其噴霧延伸較廣且分佈較均勻,此現象亦可由噴霧粒徑及體積流率之量測結果得到印證。
      在超微粒金屬粉末之製程研究方面,本文根據八個設計參數使用田口式L18實驗計畫法,並針對目標函數產生小於15微米之粉末,探討金屬粉末噴霧製程之最佳化組合。研究結果顯示,在八個設計參數中,霧化氣體種類、熔湯進料口徑、噴嘴出口大小、熔湯壓力及金屬材料種類等五種參數為重要因子。18項實驗之平均品質特性為32.86,標準差為2.67,S/N比為29.70。以最佳化之設計參數進行驗證實驗,S/N比提高6.97,品質特性則進一步提高至56.9,即所生產之金屬粉末中有56.9%落在0~15微米範圍,優於傳統外混式氣霧法噴霧製程。金屬粉末之分級結果顯示,傳統機械式震動篩分對45微米以下的粉末分級不易。這是因為小顆粒有較強之表面效應以及細粉之漂浮現象所造成,前者導致顆粒間相互團聚,並影響小顆粒之篩分品質。另外篩網網目大小的不均勻及團聚粉末形狀的不規則亦造成篩分上之困難。若以氣體輸送粉末並配合篩網篩分,可改善篩分品質,但篩網的使用仍限制了25微米以下粉末之篩分。最後以空氣動力式分級機進行超微粒粉末之分級,研究結果顯示將控制參數作適當之調整,對於1微米到30微米之超微粒金屬粉末均可得到甚佳之結果。

     The goal of this dissertation is to produce the ultra fine sprays for different applications. Both water spray and metallic spray were characterized in this research program. The atomizer was designed with internal impinging mechanism and the characteristics of the spray are measured by a Malvern Spraytec particle analyzer, a two-component phase Doppler particle analyzer (PDPA) and a particle image velocimeter (PIV). Results show that the Sauter mean diameter below 10μm has been achieved with GLR of 0.14 in the test of water atomization. The minimum mean drop size can be lowered to 4.0μm under low pressure conditions using this particular atomizer. Such performance cannot be easily achieved with the conventional nozzle design. Results also show that better atomization performance can be achieved by increasing the internal impinging angle and the orifice diameter. An empirical formula of SMD, in terms of operating conditions and nozzle length scale is also presented in this research program.
     Furthermore, instantaneous flow image shows the intermittence of the spray jet as injected with internal impingement. On the other hand, a large-scaled sinusoidal flow structure along the axial direction is observed when the spray jet is injected without internal impingement. Hence flow impingement inside the atomizer has strong effects on the structure of the spray jet because of the enhanced mixing processes between the liquid and gas phases. It turns out that the spray jet with internal impingement has a wider and more uniform distribution. Measurements of the distribution of the spray droplets and volume flux justify the above observation.
     The production of the extra-fine metal powder was further optimized using the L18(21x37) scheme of Taguchi method. The goal is to produce the metal powder with particle size less than 15μm. Optimization analysis shows that the atomization gas, the melt inlet diameter, the nozzle outlet diameter, the melt injection pressure and the materials are the control parameters among the eight design factors. Confirmation test with the optimized conditions indicates that the accumulative volume of the powder within 0~15μm as high as 56.9% can be obtained. That is, more than half of the powder is within extra-fine range. The results of melt spray were also compared with water spray in this dissertation.
     The classification for metal powder shows that the mechanical vibration sieving of particles below 45μm is difficult due to the high surface energy and the floating of small particles. The former one causes the agglomerated phenomenon that reduced the filtration quality of fine particles. The irregular distribution of the mesh and irregular shape of particles also cause some problems. On the other hand, by the classification with the air-jet sieving, the particles carried by the air flow could reduce the agglomerated and floating effects. Thus it has a better performance as compared to that of the mechanical vibration sieving. However, the classification performance is still limited due to the existence of the sieve. It is concluded that the classification of particles smaller than 25μm is difficult by the classifiers with sieves. Finally, the experiments of the aerodynamic classifier with centrifugal force were carried out in the classification of the ultra-fine particles. By adjusting the settings of the operating parameters, the classifications of particles with cut points ranging from 1μm to 30μm had been performed successfully.

    摘要 i 誌謝 iii 第一章 緒論 v 第二章 實驗設備與量測系統 vii 第三章 水模實驗之噴霧特性 ix 第四章 內衝擊與非內衝擊機制下之噴霧特性 xi 第五章 金屬粉末製程之噴霧特性 xiii 第六章 結論 xiv 第七章 未來工作之建議 xvi ABSTRACT xviii CONTENTS xx LIST OF TABLES xxv LIST OF FIGURES xxvii NOMENCLATURE xxxiii CHAPTER I INTRODUCTION 1 1.1 Historical Background 2 1.2 Motivation 4 1.3 Basic Process in Atomization 5 1.3.1 Primary Atomization 5 1.3.2 Secondary Atomization 9 1.3.3 Droplets Collision and Transport 12 1.4 Atomizers and Atomization Performance 14 1.4.1 Atomizers 14 1.4.2 Atomizer Design 16 1.4.3 Performance of Twin-Fluid Atomization 18 1.4.4 Semi-Empirical Formula 22 1.4.5 Laser Interferometer Technique 23 1.4.6 Laser Image Technique 25 1.5 Atomization of Melts and Powders Production 28 1.5.1 External Mixing Atomization 28 1.5.2 Fine Powder Atomization 32 1.5.3 Internal Mixing Atomization 34 1.5.4 Classification 36 1.6 Objectives 37 1.7 Thesis Outline 38 CHAPTER II EXPERIMENTAL FACILITY AND INSTRUMENTATION 40 2.1 Design of the Atomizer 40 2.2 Facility for Water Spray and Metallic Spray 43 2.2.1 Experimental Setup for Water Spray 44 2.2.2 Experimental Setup for Metallic Spray 46 2.3 Facility for Metal Powder Production 48 2.3.1 Metal Powder Production System with Oxidization Protection 48 2.3.2 Aerodynamic Classifier 50 2.3.3 Mechanical Vibration Screen Classifier 53 2.4 Instruments for Particle Sizing 54 2.4.1 Spraytec 55 2.4.2 Coulter - LS230 56 2.4.3 Calibration of Particle Sizer 59 2.5 Instrument for Particle Size and Velocity Measurement 60 2.5.1 System Arrangement of Phase Doppler Particle Analyzer 60 2.5.2 Principle of Velocity and Drop Size Measurement 62 2.5.3 Factors Influenced PDPA Measurement 66 2.5.4 Characterization of the Spray 67 2.5.5 Calibration of PDPA 70 2.6 Particle Image Velocimetry (PIV) System 74 2.6.1 System Arrangement 74 2.6.2 Working Principle 75 2.6.3 Factors Influenced PIV Measurement 77 2.6.4 Calibration by Rotating Disk 77 2.6.5 Comparison of Velocity Measurement with PIV, Hot Wire and PDPA 78 2.6.6 Measurement of High Speed Gas Flow 81 CHAPTER III CHARACTERIZATION OF WATER SPRAY 83 3.1 Atomization Characteristics 83 3.2 Working Regimes of the Atomization Process 89 3.3 Effects of Design Parameters 93 3.4 Correlation Formula 96 3.5 Summary 100 CHAPTER IV COMPARISON OF ATOMIZATION WITH AND WITHOUT INTERNAL IMPINGEMENT 102 4.1 Characterization of the Spray by PIV Measurement 102 4.1.1 Flow Visualization of the Spray Jet 102 4.1.2 Aerodynamic Flow Field 105 4.1.3 Instantaneous Velocity and Vorticity Distributions 107 4.2 Characterization of the Spray by PDPA Measurements 113 4.2.1 Particle Size and Volume Flux Distribution 114 4.2.2 Velocity Distribution of the Spray and Individual Droplets 117 4.2.3 Characterization of Droplet Breakup in the Spray Jet 121 4.2.4 Summary 129 CHAPTER V APPLICATION IN METAL POWDER PRODUCTION 130 5.1 Characterization of Metallic Spray 130 5.2 Optimization of Metal Powder Production 138 5.2.1 Quality Analysis 138 5.2.2 Variance Analysis and Optimization 143 5.2.3 Confirmation experiments 152 5.3 Classification of Metal Powder 155 5.3.1 Off-line Measuring Test 155 5.3.2 Mechanical Vibration Sieving 160 5.3.3 Air-Jet Sieving 170 5.3.4 Aerodynamic Classification 173 5.3.5 Summary 182 CHAPTER VI CONCLUSION 184 CHAPTER VII SUGGESTIONS FOR FUTURE WORK 187 REFERENCES 190 APPENDIX A APPLICATIONS OF METAL POWDERS IN ELECTRONIC PACKAGING 199 A.1 Introduction to Electronic Packaging 199 A.2 Solder Powders in Solder Paste 201 A.3 Application of Powders on Liquid-Crystal Display (LCD) 203 APPENDIX B INTRODUCTION TO TAGUCHI METHODS 207 B.1 A Brief History of Taguchi Method 207 B.2 Quantitative Methods of Data Analysis 208 B.2.1 The Mean 208 B.2.2 The Variance 209 B.2.3 The Standard Deviation 209 B.2.4 The Larger-the-Better S/N Ratio 209 B.3 Design Experiments 210 B.3.1 Orthogonal Array Experiments 211 B.3.2 The Analysis of Means (ANOM) 213 B.3.3 Degrees of Freedom 215 B.4 Analysis of Variance (ANOVA) 217 B.4.1 ANOVA Process 217 B.4.2 Error Variance and Pooling 220 B.4.3 The F-Test 221 PUBLICATION LIST 223 VITA 227

    [1] Huppmann, W. J., and Dalal, K., 1986, Metallographic Atlas of Powder Metallurgy, Verlag Schmid GMBH, Freiburg, Germany.
    [2] Lefebvre, A. H., 1989, Atomization and Sprays, Hemisphere Publishing Corporation, ISBN 0-89116-603-3, ISSN 1040-2765.
    [3] Dombrowski, N., and Johns, W. R., 1963, “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets”, Chem. Eng. Sci., 18, pp. 203.
    [4] Klar, E., and Fesco, J., 1981, Prog. Powder Metall., 37, pp. 47.
    [5] Garci’a, R. C., Gala’n, A. S., Castrejo’n, J. R., and Pita, A. A., 2003, “The Fractal Dimension of an Oil Spray, Fractals”, 11(2), pp. 155-161.
    [6] Mazallon, J., Dai, Z., and Feath, G. M., 1999, “Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows”, Atomization and Sprays, 9, pp. 291-311.
    [7] Christophe, D., 2001, “Measurement of Breakup Length of Cylindrical Liquid Jet”, Application to Low-Pressure Car Injector, Atomization and Sprays, 11, pp. 201-226.
    [8] Mccreery, G. E., and Stoots, C. M., 1996, “Drop Formation Mechanism and Size Distributions for Spray Plate Nozzles”, Int. J. Multiphase Flow, 22(3), pp. 431-452.
    [9] Chou, W. H., Hsiang, L. P., Feath, G. M., 1997, “Temporal Properties of Drop Breakup in the Shear Breakup Regime”, Int. J. Multiphase Flow, 23(4), pp. 651-669.
    [10] Lane, W. R., 1951, “Shatter of Droplets in Stream of Air”, Ind. Eng. Chem., 43(6), pp. 1312-1317.
    [11] Hinze, J. O., 1955, “Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes”, AIChE J., 1(3), pp. 289-295.
    [12] Chigier, N. A., and Reitz, R. D., 1996, “Regimes of Jet Breakup Mechanism”, in K. Kuo (ed.), Prog. Astronaut. Aeronautics, 1, pp. 109-136.
    [13] Wu, P. K., and Faeth, G. M., 1993, “Aerodynamics Effects on Primary Breakup of Turbulent Liquids”, Atomization and Sprays, 3, pp. 265-289.
    [14] Liu, A. B., and Reitz, R. D., 1993, “Mechanism of Air Assisted Liquid Atomization”, Atomization and Spray, 3, pp. 55-75.
    [15] Dai, Z., and Feath, G. M., 2001, “Temporal Properties of Secondary Drop Breakup in the Multimode Breakup Regime”, Int. J. Multiphase Flow, 27, pp. 217-236.
    [16] Hsiang, L. P., and Faeth, G. M., 1992, “Near-Limit Drop Deformation and Secondary Breakup”, Int. J. Multiphase Flow, 18(5), pp. 635-652.
    [17] Lee, C. S., and Reitz, R. D., 2001, “Effect of Liquid Properties on the Breakup Mechanism of High-Speed Liquid Drops”, Atomization and Sprays, 11, pp. 1-19.
    [18] O’Rourke, P. J., and Bracco, F. V., 1980, “Modeling of Drop Interactions in Thick Sprays and a Comparison with Experiments”, Stratified Charge Automotive Engineering Conference, the Institute of Mechanical Engineering, London.
    [19] Asheim, J. P., Kirwan, J. E., and Peters, J. E., 1987, “Modeling of a hollow-cone liquid spray including droplet collisions”, AIAA-87-0135.
    [20] Sturgess, G. J., Syed, S. A., and McManus, K. R., 1985, “Calculation of a hollon-Cone Liquid Spray in a Uniform Air Stream”, J. Propulsion, 1(5), pp. 360-369.
    [21] Hong, C. H., 1991, “Dynamic Characteristics of the Continuous and Dispersed Phase in a Hollow Cone Spray Jet”, Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C.
    [22] Lai, W. H., Yang, K. H., Hong, C. H., and Wang, M. R., 1996, “Droplet Transport in Simplex and Air-Assisted Sprays”, Atomization and Sprays, 6, pp. 21-49.
    [23] Nguyen, Q. V., Rangel, R. H., and Rankin, D. D., 1991, “Measurement and Prediction of Trajectories and Collision of Droplets”, Int. J. Multiphase Flow, 10(2), pp. 159-177.
    [24] Yule, A. J. and Dunkley, J. J., 1994, Atomization of Melts for Powder Production and Spray Deposition, Oxford University Press Inc., New York, ISBN 0-19-856258-6.
    [25] Shigenori K., 2003, “Steady-State Paint Flow under High Centrifugal Force Atomization in Spray Painting”, JSAE Review, 24, pp. 489-494.
    [26] Lavernia, E. J., and Wu, Y., 1996, Spray Atomization and Deposition, John Wiley& Sons Ltd, ISBN 0-471-95477-2.
    [27] Tamaki, N., Sbimizu, M., and Hiroyasu, H., 2001, “Enhancement of the Atomization of a Liquid Jet by Cavitation in a Nozzle Hole”, Atomization and Sprays, 11, pp. 125-137.
    [28] Chang, J. C., Haung, S. B., Lin, C. M., 2006, Effects of Inlet Surface Roughness, Texture and Nozzle Material on Cavitation, Atomization & Sprays, 3. (in press)
    [29] Kufferath, A ., Wende, B., and Leuckel, W., 1999, “Influence of Liquid Flow Conditions on Spray Characteristics of Internal-Mixing Twin-Fluid Atomizers”, International Journal of Heat and Fluid Flow, 20, pp. 513-519.
    [30] Halder, M. R., Dash, S. K., and Som, S. K., 2002, “Initiation of Air Core in a Simplex Nozzle and the Effects of Operating and Geometrical Parameters on Its Shape and Size”, Experimental Thermal and Fluid Science, 26, pp. 871-878.
    [31] Wang, M. R., Kuo, C. C., Yang, J. R., Chiu, J. S., Chen, C. P., and Sheu, M. S., 2004, “Atomization Characteristics of Molten Metal in a Linear Atomizer with Low Aspect Ratio”, In Proc. ILASS-Asia 2004, pp. 193-201.
    [32] Rizkalla, A. A., and Lefebvre, A. H., 1975, “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics”, J. Eng. Power, pp. 173-179.
    [33] Rizkalla, A. A., and Lefebvre, A. H., 1975, “The Influence of Air and Liquid Properties on Airblast Atomizer”, J. Fluids Eng., 97, pp. 316-320.
    [34] Beck, J. E., and Lefebvre, A. H., 1991, “Airblast Atomization at Conditions of Low Air Velocity”, J. Propulsion, 7(2), pp. 155-170.
    [35] Beck, J. E., Lefebvre, A. H., and Koblish, T. R., 1991, “Liquid Sheet Disintegration by Impinging Air Streams”, Atomization and Sprays, 1(2), pp. 155-170.
    [36] Rizk, N. K., and Lefebvre, A. H., 1983, “Influence of Atomizer Design Feature on Mean Drop Size”, J. AIAA, 21(8), pp. 1139-1142.
    [37] Aligner, M., and Wittig, S., 1980, “Swirl and Counter Swirl Effects in Prefilming Airblast Atomization”, Trans. ASME J. Eng. Power, 102, pp. 706-710.
    [38] Lefebvre, A. H., 1983, Gas Turbine Combustion, Hemisphere.
    [39] Lefebvre, A. H., Wang, X. F., and Martin, C. A., 1988, “Spray Characteristics of Aerated-Liquid Pressure Atomizers”, AIAA J. Prop. Power, 4(4), pp. 293-298.
    [40] Roesler, T. C., and Lefebvre, A. H., 1989, “Studies on Aerated-Liquid Atomization”, Int. J. Turbo Jet Engines, 6, pp. 221-230.
    [41] Wang, X. F., Chin, J. S., and Lefebvre, A. H., 1989, “Influence of Gas Injector Geometry on Atomization Performance of Aerated-Liquid nozzles”, Int. J. Turbo Jet Engines, 6, pp. 271-280.
    [42] Sovani, S. D., Sojka, P. E., and Lefebvre, A. H., 2001, “Effervescent Atomization”, Progress in Energy and Combustion Science, 27, pp. 483-521.
    [43] Lund, M. T., Sojka, P. E., Lefebvre, A. H., and Gosselin, P. G., 1993, “Effervescent Atomization at Low Mass Flow Rates. Part 1: The Influence of Surface Tension”, Atomization and Sprays, 3, pp. 77-89.
    [44] Sutherland, J. J., Sojka, P. E., and Plesniak, M. W., 1997, “Ligament Controlled Effervescent Atomization”, Atomization and Sprays, 7(4), pp. 383-406.
    [45] Panchagnula, M. V., and Sojka, P. E., 1999, “Spatial Droplet Velocity and Size Profiles in Effervescent Atomizer-Produced Sprays”, Fuel, 78, pp. 729-741.
    [46] Whitlow, J. D., and Lefebvre, A. H., 1993, “Effervescent Atomizer Operation and Spray Characteristics”, Atomization and Sprays, 3, pp. 137-156.
    [47] Nguyen, D. A., and Rhodes, M. J., 1998, “Producing Fine Drops of Water by Twin-Fluid Atomisation”, Powder Technology, 99, pp. 285-292.
    [48] Guo, L. J., Li, G. J., Chen, B., Chen, X. J., Papailiou, D. D., and Panidis, T., 2002, “Study on Gas-Liquid Two-Phase Spraying Characteristics of Nozzles for the Humidification of Smoke”, Experimental Thermal and Fluid Science, 26, pp. 715-722.
    [49] Wang, M. R., Sheu, M. S., and Yang, S. R., 2000, “Performance of a Linear Internal Mixing Atomizer in Atomization of Molten Metals”, In: Proc. ILASS 2000, Pasadena, USA.
    [50] Wang, M. R., , Lin, T. C., and Yang, C. J., 2005, “Low Pressure Atomization Process of Molten Metal in a Linear Internal Mixing Atomizer”, Transaction of the Aeronautical and Astronautical Society of the Republic of China, 36(3), pp. 269-274.
    [51] Nagasaka, K., Takagi, T., Koyanagi, K., and Yamauchi, T., 2000, “The Development of Fine Atomization Injector”, JSAE Review, 21, pp. 309-313.
    [52] Durst, F., Melling, A., and Whitelaw, J. H., 1976, Principles and Practice of Laser-Doppler Anemometry, Academic Press, NY, ISBN 0-12-225250-0.
    [53] Corcoran, T. E., Hitron, R., Humphrey, W., and Chigier, N., 2000, “Optical Measurement of Nebulizer Sprays: A Quantitative Comparison of Diffraction, Phase Doppler Interferometry, and Time of Flight Techniques”, J. Aerosol Sci., 31(1), pp. 35-50.
    [54] Lee, K. and Reitz, R. D., 2004, “Investigation of Spray Characteristics from a Low-Pressure Common Rail Injector for Use in a Homogeneous Charge Compression Ignition Engine”, Meas. Sci. Technol., 15, pp. 509-519.
    [55] Doudou, A., 2005, “Turbulent Flow Study of an Isothermal Diesel Spray Injected by a Common Rail System”, Fuel, 84, pp. 287-298.
    [56] Han, Y. M., Seol, W. S., Lee, D. S., Yagodkin, V. I., and Jeung, I. S., 2001, “Effect of Fuel Nozzle Displacement on Pre-Filming Airblast Atomization”, J. Eng. for Gas Turbine and Power, 123, pp. 33-40.
    [57] Kim, B., Lee, K., and Lee, C., 2002, “Analysis of an Atomization Mechanism for an Air-Shrouded Injector”, Meas. Sci. Technol., 13, pp. 65-77.
    [58] Zbicinski, I., Delag, A., Strumillo, C., and Adamiec, J., 2002, “Advanced Experimental Analysis of Drying Kinetics in Spray Drying”, Chemical Eng. J., 86, pp. 207-216.
    [59] Anjorin, V. A. O., Tang, H., Morgan, A. J., and Barton, I. E., 2003, “An Experimental and Numerical Investigation into the Dispersion of Powder from a Pipe”, Experimental Thermal and Fluid Science, 28, pp. 45-54.
    [60] Lourenco, L. M., Krothapalli, A., and Smith, C. A., 1989, “Particle Image Velocimetry”, Advances in Fluid Mechanics Measurements, Lecture Notes in Engineering-45, Springer-Verlag, pp. 127-200.
    [61] Lourenco, L. M., Krothapalli, A., Buchlin, J. M., and Riethmuller, M. L., 1986, “A Non-Invasive Experimental Technique for the Measurement of Unsteady Velocity and Vorticity Fields”, AIAA Jornal, 24, pp. 1715-1717.
    [62] Lourenco, L. M., and Krothapalli A., 2004, “Stereoscopic and Time Resolved PIV Measurements in High-Speed Flows”, AIAA, 2180-2194.
    [63] Willert, C., Raffel, M., Kompenhans, J., Stasicki, B., and La’’hler, C., 1996, “Recent Applications of Particle Image Velocimetry in Aerodynamic Research”, Flow Meas. Instrum., 7(3/4). pp. 247-256.
    [64] Raffel, M., Willert, C. E., Kompenhans, J., 1998, Particle Image Velocimetry–A Practical Guide, Springer , ISBN 3-540-63683-8.
    [65] Newbery, A. P., Rayment, T., and Grant, P. S., 2004, “A Particle Image Velocimetry Investigation of In-Flight and Deposition Behavior of Steel Droplets During Electric Arc Sprayforming”, Materials Science and Engineering A, 383, pp. 137-145.
    [66] Adrian, R. J., 2005, “Twenty Years of Particle Image Velocimetry”, Experiments in Fluids, 39, pp. 159-169.
    [67] Menon, M., and Lai, W. T., 1991, “Key Considerations in the Selection of Seed Particles for LDV measurements”, Laser Anemometry Advances and Applications, ASME, pp. 719-730.
    [68] Ikeda, Y., Nishigaki, M., Ippommatsu, M., and Nakajima, T., 1994, “Optimum Seeding Particles for Successful Laser Doppler Velocimeter Measurements”, Part. Part. Syst. Charact., 11, pp. 127-132.
    [69] Nishigaki, M., Ippommatsu, M., Ikeda, Y., and Nakajima, T., 1992, “New High-Performance Tracer Particles for Optical Gas Flow Diagnostics”, Meas. Sci. Technol., 3, pp. 619-621.
    [70] Lee, K. H., Lee, C. H., and Lee, C. S., 2004, “An Experimental Study on the Spray Behavior and Fuel Distribution of GDI Injectors Using the Entropy Analysis and PIV Method”, Fuel, 83, pp. 971-980.
    [71] Richter, B., Rottenkolber, G., Hehle, M., Dullenkopf, K., and Wittig, S., 2001, “Investigation of Fuel Sprays by Means of Stereoscopic Particle Image Velocimetry and Highspeed Visualization”, ILASS-Europe 2001, Zurich, 2-6 September.
    [72] Lavernia, E. J., Srivatsan, T. S., and Rangel, R. H., 1992, “Atomization of Alloy Powders”, Atomization and Sprays, 2, pp. 253-274.
    [73] Capus, J. M., and German, R. M., 1992, “Centrifugal Atomization: Influence of Process Parameters on Size Distribution”, Powder Production and Spray Forming, 1, pp. 127-135.
    [74] Wentzell, J. M., 1974, “Metal Powder Production by Vacuum Atomization”, J. Vac. Sci. Technology, 11(6), pp. 1035.
    [75] Mati, G., Bicsak, E., Huppmann, W. J., and Claussen, N., 1977, “Atomization of Metal Powders Using the Vibrating Electrode Method, Modern Developments in Powder Metallurgy”, Edited by Hausner, H. H. and Taubenblat, P. W., Metal Powder Industries Federation, Princeton, NJ, 9, pp. 153.
    [76] Ting, J., Peretti, M. W., and Eisen, W. B., 2002, “The Effect of Wake-Closure Phenomenon on Gas Atomization Performance”, Materials Science and Engineering A, 326, pp.110-121.
    [77] Wolf, G. and Bergmann, H. W., 2002, “Investigations on Melt Atomization with Gas and Liquefied Cryogenic Gas”, Materials Science and Engineering A, 326, pp.134-143.
    [78] Anderson, I. E., and Terpstra, R. L., 2002, “Progress Toward Gas Atomization Processing with Increased Uniformity and Control”, Materials Science and Engineering A, 326, pp. 101-109.
    [79] Zhou, Y., Lee, S., McDonell, V. G., Samuelsen, G. S., Kozarek, R. L., and Lavernia, E. J., 1999, “Size Distribution of Spray Atomised Aluminum Alloy Powders Produced During Linear Atomisation”, Materials Science and Technology, 15(2), pp. 226-234.
    [80] Mansour, A., and Chigier, N., 1990, “Disintegration of Liquid Sheets”, Phys. Fluids A, 2, pp.706-719.
    [81] Pe’rez, P. A., Gonza’lez, J. E., and Sa’nchez, R., 2000, “Characterization of the Deposition Process of Spray Forming in Lonear Atomizers”, Procc. IClass 2000, Pasadena, CA, USA, July.
    [82] Bradbury, S., Powder Metallurgy Equipment Manual, 3rd edition, Princeton, New Jersey, ISBN 0-918404-68-1.
    [83] German, R. M., 1994, Powder Metallurgy Science, Metallurgy Industries Federation, ISBN 957-584-368-1.
    [84] Liang, X., Earthman, J. C., and Lavernia, E. J., 1992, “On the Mechanism of Grain Formation during Spray Atomization and Deposition”, Acta Metall. Mater., 40(11), pp. 3003-3016.
    [85] Lagutkin, S., Achelis, L., Sheikhaliev, S., Uhlenwinkel, V., Srivastava, V., 2004, “Atomization Process for Metal Powder”, Materials Science and Engineering A, 382, pp. 1-6.
    [86] Miller, S. A., 1987, “Closed-Coupled Gas Atomization of Metal Alloys”, Metal Powder Report, 42(10), pp. 702.
    [87] Hopkins, W. G., 1990, “Fine Powder: Closed-Couple or Open-Die Atomization?”, Metal Powder Report, 42(1), pp. 41.
    [88] Anderson, I. E., 1991, “Boost in Atomization Pressure Shaves Powder-Particle Size”, Advanced Materials and Processes, 140(1), pp. 30.
    [89] Anderson, I. E., Figliola, R. S., and Morton, H., 1991, “Flow Mechanism in High Pressure Gas Atomization”, Mats. Sci. and Eng. A, 148, pp. 101.
    [90] Wang, M. R., Lai, T. S., Lin, T. C., Chiu, C. H., and Yang, C. J., 2005, “Optimization of Metal Powder Production by Gas Atomization Processes with Internal-Mixing Mechanism”, Transactions of the Aeronautical and Astronautical Society of the Republic of China, 37(2), pp.153-162. (in Chinese)
    [91] Yamada, Y., Yasuguchi, M., and Iinoya, K., 1987, “Effects of Particle Dispersion and Circulation Systems on Classification Performance”, Powder Technology, 50(3), pp. 275-280.
    [92] Bu’’ttner, H., 1988, “Size Separation of Particles from Aerosol Samples Using Impactors and Cyclones”, Part. Part. Syst. Charact., 5, pp. 87-93.
    [93] Nakajima, Y., Komuro, Y., and Sato, T., 1995, “Scavenging of Submicron Particles by Coarse Particles under the Effects of Electrostatic Field and Particle Vibration”, J. Electrostatics, 34, pp. 37-49.
    [94] Galk, J., Peukert, W., and Krahnen, J., 1999, “Industrial Classification in a New Impeller Wheel Classifier”, Powder Technology, 105, pp. 186-189.
    [95] Yamamoto, K., Shiokari, M., Miyajima, T., and Sugimoto, M., 2002, “Separation of Differently Shaped Fine Particles by a New Wet Shape Separator - Effects of Sweep Methods on the Separation Characteristics”, Powder Technology, 125, pp. 74-81.
    [96] Lee, K. and Reitz, R., 2004, “Investigation of Spray Characteristics from a Low-Pressure Common Rail Injector for Use in a Homogeneous Charge Compression Ignition Engine”, Meas. Sci. Technol., 15, pp. 509-519.
    [97] William, D. B., 1980, Method for Measuring the Size and Velocity of Spheres by Dual-Beam Light-Scatter Interferometry, Applied Optics, 10(2), pp.363-370.
    [98] Lai, W. H., 1995, “Droplet Transport and Turbulence Modulation in the Developing Process of the Spray Flow”, Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C.
    [99] Lau, J. H., 1994, Chip on Board Technologies for Multichip Modules, ITP, ISBN 0-442-01441-4.
    [100] Nguty, T. A., Salam, B., Durairaj, R., and Ekere, N. N., 2001, “Understanding the Process Window for Printing Lead-Free Solder Pastes”, IEEE Transaction on Electronics Packaging Manufacturing, 24(4), pp. 249-254.
    [101] Kim, J. H., Satom, M., and Iwasaki, T., 2005, “Rheological Properties of Particle-Flux Suspension Paste”, Advanced Powder Technol., 16(1), pp. 61-71.
    [102] Li, L., and Thompson, P., 2000, “Stencil Printing Process Development for Flip Chip Interconnect”, IEEE Transaction on Electronics Packaging Manufacturing, 23(3), pp. 165-170.
    [103] Itsuo, W., Naoyuki, S., Kenzo, T., and Tomohisa, O., 1995, “Flip Chip Interconnection Technology Using Anisotropic Conductive Adhesive Films”, In: Flip Chip Technologies, McGraw-Hill, pp. 301-315. ISBN 0-07-036609-8.
    [104] Chang, H. L., 1995, ‘Anisotropic Conductive Flip Chip-on-Glass Technology”, In: Flip Chip Technologies, McGraw-Hill, pp. 317-339. ISBN 0-07-036609-8.
    [105] Ealey, L. A., 1994, Quality by Design: Taguchi Methods & US Industry, Irwin, ISBN 1-55623-970-X.
    [106] Fowlkes, W. Y., Creveling, C. M., 1995, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, Addison-Wesley, ISBN 0-201-63367-1.
    [107] Lochner, R. H., Matar, J. E., 1990, Designing for Quality: An introduction to the Best of Taguchi and Western Methods of Statistical Experimental Design, Chapman and Hall, ISBN 0-412-40020-0.
    [108] Li, H. H., 2000, Taguchi Methods: Principles and Practices of Quality Design, Gauli, ISBN 957-584-808-X. (in Chinese)

    下載圖示 校內:立即公開
    校外:2006-02-09公開
    QR CODE