簡易檢索 / 詳目顯示

研究生: 陳富民
Chen, Fu-Ming
論文名稱: 適用在非線性資料取樣系統之以觀測器/卡爾曼濾波器系統鑑別法為基底的開迴路反覆學習控制其閉迴路追蹤器
A Novel Closed-loop Type Tracker through the OKID-based Open-loop Type Iterative Learning Control for a Class of Nonlinear Sampled-data Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 68
中文關鍵詞: 觀測器學習控制
外文關鍵詞: observer, ILC
相關次數: 點閱:60下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個適用在非線性取樣系統之以觀測器/卡爾曼濾波器系
    統鑑別法為基底的開迴路反覆學習控制其閉迴路追蹤器,此閉迴路控制法則可以使暫態和穩態相位都具有良好的追蹤效能。以觀測器為基底的數位再設計追蹤器可以抑制未知和非線性干擾。甚至可以不用重新設定其初始條件。首先,類比非線性系統的最佳化模式是被架構在操作點上。依據類比觀測器用於好的設計類比OKID-ILC 非線性系統更新是保證在操作點。然後,線性二次式調整器技術和具高增益特性被應用在最佳線性化模式的類比觀測器為基底的追蹤器。最後,我們提出數個多輸入多輸出的例子,來說明我們所提出方法的可行性。

    In the thesis, a novel observer/Kalman filter identification (OKID) OKID-based iterative
    learning control (ILC) for a class nonlinear sample-data system is proposed and supplies a good tracking performance in both the transient and steady-state phase. The proposed
    observer-based digital redesign tracker can suppress the uncertainties and the nonlinear
    perturbations, even without resetting the identical initial condition. First, the optimal linear model of the analog nonlinear system is constructed at the operating point. The operating point is generated due to the analog observer updated by the well-designed analog OKID-ILC nonlinear system. Thereafter, the linear quadratic regulator (LQR) design technique with a high-gain property is applied to design an analog observer-based tracker of the optimal linear model. Finally, MIMO numerical examples are given to illustrate the effectiveness and the feasibility of the proposed method.

    中文摘要........................................I Abstract...................................... II List of Contents ............................. III List of Figures................................ V Chapter 1. Introduction........................................................................................................... 1-1 2. Iterative Learning Control for a Class of Nonlinear Systems.............................. 2-1 2.1 Introduction .................................................................................................... 2-1 2.2 The design of ILC controller .......................................................................... 2-2 2.3 Problem formulation and ILC updating law.................................................... 2-4 2.4 The ILC scheme............................................................................................. 2-5 3. Observer / Kalman Filter Identification for Nonlinear Systems.......................... 3-1 3.1 Introduction ................................................................................................... 3-1 3.2 Basic observer equation ................................................................................. 3-2 3.3 Computation of Markov parameters ............................................................... 3-5 3.3.1 System Markov parameters ................................................................. 3-5 3.3.2 Observer-gain Markov parameters....................................................... 3-6 3.4 Relationship to Kalman filter ......................................................................... 3-9 3.5 OKID algoritm............................................................................................. 3-12 4. The Prediction-based Digital Redesign................................................................. 4-1 4.1 Introduction ................................................................................................... 4-1 4.2 Linear quadratic analog tracker design........................................................... 4-2 4.3 Observer-based linear quadratic analog tracker design ................................... 4-3 4.4 Digital redesign of the linear quadratic analog tracker.................................... 4-5 4.5 Digital redesign of the observer-based linear quadratic analog tracker............ 4-7 4.6 Optimal linearization ................................................................................... 4-10 4.7 OKID-ILC based tracker for TVN sampled-data system.............................. 4-13 4.8 Illustrative Examples ................................................................................. 4-18 4.8.1 Example 4.1 Chen’s and Lorenz’s coupling system.......................... 4-18 4.8.2 Example 4.2 Two-link robot............................................................. 4-25 5. Conclusion.......................... 5-1 Reference

    Ahn, H. S., Choi, C.H. and Kim, K.B. ,1993 , “Iterative learning control for a class of
    nonlinear systems,” Automatica 29(6) , 1575-1578.
    Arimoto, S. , 1990 , “Learning control theory for robotic motion,” International Journal of
    Adaptive Control and Signal Processing 4 , 54-564.
    Arimoto, S., Kawamura, S. and Miyazaki, F., 1984 , “Bettering operation of robots by
    learning,” , J. Robotic System 1 , 123-140.
    Chang, W., Park, Y.H. , Joo, Y.H. and Chen, G. , 2002 , “Design of sampled-data
    fuzzy-model-based control systems by using intelligent digital redesign,” IEEE
    Transaction Circuits System 49 , 509-517.
    Chen, Y., Wen, C., Gong, Z., and Sun, M., 1999 , “An iterative learning controller with
    initial state learning,” IEEE Transaction Automatic Control 44 , 371-376.
    Chow, T.W.S., Li, X.D. and Fang, Y., 2000 , “A real-time learning control approach for
    nonlinear continuous-time system using recurrent neural networks,” IEEE
    Transaction Industrial Electric 47 , 478-486.
    Guo, S.M., Shieh, L.S., Chen, G.. and Lin, C.F. , 2000 , “Effective chaotic orbit tracker : a
    prediction-based digital redesign approach,” IEEE Transaction on Circuits and
    System-I , Fundamental Theory and Applications 47(11) , 1557-1570.
    Guo, S.M. , Shieh, L.S., Lin, C.F. and Chandra, J., 2001, “State-space self-tuning control
    for nonlinear stochastic and chaotic hybrid system,” Int, J. Bifurcation Chaos 11(4) ,
    1079-1113.
    Juang, J.N., 1994, Applied System Identification, Englewood Cliffs. NJ, Prentice-Hall.
    Joo, Y.H., Chen, G. and Shieh, L.S., 1999, “Hybrid state-space fuzzy model-based
    controller with dual-rate sampling for digital control of chaotic systems,” IEEE
    Transaction Fuzzy System 7, 394-408.
    Jiang, P., and Unbehauen, R., 2002 , “Iterative learning neural network control for
    nonlinear system trajectory tracking,” Neurocomputing 48(1-4) , 141-153.
    Kuo, C. Digital Control System., 1980 , New York : Holt, Rinehart, and Winston.
    Kuc, T.Y., Lee, J.S. and Nam, K., 1992 , “An iterative learning control theory for a class of
    nonlinear dynamic systems,” Automatica 28(6), 1215-1221.
    Kim, Y.H. and Ha, I.J., 2000 , “Asymptotic state tracking in a class of nonlinear systems
    via learning-based inversion,” IEEE Transaction Automatica Control 45, 2011-2027.
    Lee, H.J., Park, J.B. and Joo, Y.H., 2003 , “An efficient observer-based sampled-data
    control : digital redesign approach,” IEEE Transaction Circuits and Systems-I ,
    Fundamental Theory and Applications 50(12).
    Moore, K.L., 1998 , “Iterative learning control : an expository overview,” Applications &
    Computer Control Signal Processing, Circuits 1, 151-214.
    Phan, M., Jorta, L.G., Juang, J.N. and Longman, R.W., 2004, “Linear system identification
    via an asymptotically stable observer”, Control Engineering Practice 12, 1575-1598.
    Rajamani, R., 1998 , “Observers for Lipschitz nonlinear systems,”IEEE Transaction
    Automatica Control 43, 397-401.
    Shieh., L.S., Wang, W and Tsai J.S.H., 1999 , “Optimal digital redesign of hybrid uncertain
    systems using genetic algorithms,”Proc. Inst. Elect. Eng.-Control Theory Appl. 146,
    119-130.
    Shieh, L,S., Wang, W.M., Bain, J. and Chandra, J., 2000, “Design of lifted dual-rate digital
    controllers for X-38 vechicle,”AIAA, J. Guid Control Dyn. 23 ,629-639.
    Sun, M. and Wang, D., 2001, “Sampled-data iterative learning control for nonlinear
    systems with arbitrary relative degree,” Automatica 37 (11), 283-289.
    Tayebi, A. and Xu, J.X., 2003 , “Observer-based iterative learning control for a class of
    time-varying nonlinear systems,” IEEE Transactions on Circuits and System-I,
    Fundamental Theory and Application 50(3), 452-455.
    Tayebi, A. and Xu, J.X., 2003 , “Observer-based iterative learning controller with initial
    state learning,” IEEE Transaction Automaica Control 44, 371-376.
    Tian, Y.P. and Yu, X., 2004 , “Robust learning control for a class of nonlinear systems with
    periodic and aperiodic uncertainties,” Automatica39(11), 1957-1966.
    Tsai, J.S.H., Chien, T.H., Guo, S.M., Chang Y.P. and Shieh, L.S., 2007 , “State-space
    Self-Tuning Control for Stochastic Fractional-Order Chaotic Systems,” IEEE
    Transactions Circuits and System-I : Regular papers 54(3), 632-646.
    Xu, J., Chen, G. and Shieh, L.S., 1996 , “Digital redesign for controlling chaotic Chua’s
    circuit,” IEEE Tran. Aerosp. Electron. Syst. 32, 1488-1499.
    Xu, J.X., Qu, Z., 1998 , “Robust iterative learning control for a class of nonlinear systems,”
    Automatica 34, 983-988.
    Xu, J.X. and Yan, Yan, 2004 , “Iterative learning control design without a priori knowledge
    of the control direction,” Automatica 40(10), 1803-1809.
    Yokoyama, T., Kosuge, K. and Furuta, K., 1989 , “Digital redesign of robot control,” in
    Proc. IECON’ 89, 15th Ann. Conf. IEEE 2, 409-414.

    下載圖示 校內:2008-07-04公開
    校外:2010-07-04公開
    QR CODE