簡易檢索 / 詳目顯示

研究生: 詹凱翔
Chan, Kai-Hsiang
論文名稱: 運用平均變異數及基因演算法來建構最佳基金投資組合權重之研究
Applying Mean-Variance Model and Genetic Algorithms to Construct Optimal Weights of Portfolio of Funds
指導教授: 李宏志
Li, Hung-chih
賴秀卿
Lai, Hsiu-ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 79
中文關鍵詞: 平均數變異數模型基因演算法基金投資組合
外文關鍵詞: Markowitz Mean-Variance Model, Genetic Algorithm, funds portfolio
相關次數: 點閱:109下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用Markowitz所提出的平均數變異數模型 (Mean-Variance Model) 以及人工智慧裡的基因演算法 (Genetic Algorithm),來建構最佳化權重的基金投資組合,並且利用MSCI全球指數、S&P 500以及平均權重基金投資組合來比較其績效的優劣。本研究採用十七檔富蘭克林基金做為基金投資組合的標的,並且依照富蘭克林基金公司將市場分為以下五個區域:全球型、歐洲、新興市場、美國以及單一國家。研究期間為一九九九年一月至二00七年十二月。
    Markowitz的投資組合理論至今仍為許多投資理論的研究重心,但是其中常態分配的基本假設使得平均數變異數模型(Mean-Variance Model)在過去實務上的績效表現較差,而基因演算法(Genetic Algorithm)則無此項基本假設的限制。但本研究中取自富蘭克林的標的基金大部分均服從常態分配,因此探討基因演算法(Genetic Algorithm)所建構的基金投資組合是否還能夠優於平均數變異數模型(Mean-Variance Model)也為本研究中的探討重點。
    本研究發現:(一) 在報酬最大操作下的績效表現優於風險最小下的績效表現。 (二) 平均數變異數模型(Mean-Variance Model)及基因演算法(Genetic Algorithm)在Jensen及Sharpe下可以顯著擊敗MSCI全球指數、S&P 500以及平均權重基金投資組合。(三) 基因演算法(Genetic Algorithm)只能在風險最小下的Jensen及Treynor擊敗平均數變異數模型(Mean-Variance Model)。(四) 平均數變異數模型(Mean-Variance Model)在風險最小及報酬最大下的績效均具有持續性,基因演算法(Genetic Algorithm)則只能在風險最小下的績效具有持續性。

    This study applies Mean-Variance Model proposed by Markowitz and Genetic Algorithm developed from artificial intelligence to construct optimal weighted simulated fund portfolios. We also compare the performance of simulated fund portfolios with MSCI All Country World Index, S&P 500, and equally weighted fund portfolios. We adopt Franklin Investments as our target funds which are categorized into five regions: Global market, European market, Emerging market, American market and Single country market. The period of this study starts from January 1999 to December 2007.
    Markowitz’s Mean-Variance Model is still a famous investment theory for asset allocation until now. Normal distribution is the main assumption of Mean-Variance Model and if the distribution is not normal, then, the optimal solution can not be achieved by using Mean-Variance Model. Genetic Algorithm does not require the assumption of normal distribution. But most of our chosen funds follow normal distribution. The main purpose of this thesis is to investigate whether Genetic Algorithm can perform better than Mean-Variance Model or not in this thesis.
    Our results are as follows. First, the performance of Mean-Variance Model and Genetic Algorithms based on maximizing return for a given risk is better than that based on minimizing risk for a given return. Second, Mean-Variance Model and Genetic Algorithms can outperform MSCI All Country World Index, S&P 500, and equally weighted fund portfolios based on Jensen’s measure and Sharpe’s measure under return-maximizing procedure. Third, Genetic Algorithms can only outperform Mean-Variance Model based on Jensen’s measure and Treynor’s measure under risk-minimizing procedure. Finally, the performance of Mean-Variance Model has better persistence than that of Genetic Algorithms in the future period.

    ABSTRACT IV Contents V List of Tables VII List of Figures X CHAPTER 1 INTRODUCTION 1 1.1 Motivation and Background 1 1.2 Objective 2 1.3 Contribution 3 CHAPTER 2 LITERATURE REVIEW 4 2.1 Fund of Funds (FoF) 4 2.2 Models for Portfolio Construction 4 2.2.1 Markowitz Mean-Variance Portfolio Selection Model 4 2.2.2 The Genetic Algorithm 9 CHAPTER 3 MODEL SPECIFICATIONS AND METHODOLOGY 13 3.1 Data 13 3.1.1 Source of Data 13 3.1.2 Detail List of Sample Data 13 3.2 Research Hypothesis 15 3.3 Research Designs and Procedures 16 3.4 Definition of Parameters 17 3.4.1 Estimation of Monthly Volatility of MSCI All Country World Index 17 3.4.2 Estimation of the Systematic Risk 17 3.4.3 Sharpe’s Measure 18 3.4.4 Treynor’s Measure 19 3.4.5 Jensen’s Measure 19 3.5 Methodology 20 3.5.1 Markowitz Mean-Variance Model 20 3.5.2 Genetic Algorithms 25 3.6 Normal Distribution Test: One-Sample Kolmogorov- Smirnov Test 31 3.7 Performance Persistence Test: Spearman Rank Correlation Coefficient Test 32 CHAPTER 4 EMPIRICAL RESULTS 35 4.1 Normality Test 35 4.2 Performance Comparison 37 4.2.1 Paired T-test based on Jensen’s Alpha under Risk- Minimizing Scenario 38 4.2.2 Paired T-test based on Sharpe’s Measure among Mean- Variance Model, Genetic Algorithms, MSCI, S&P500 and Equal Weight Method under Risk-Minimizing Scenario 41 4.2.3 Paired T-test based on Treynor’s Measure among Mean- Variance Model, Genetic Algorithms, MSCI, S&P500 and Equal Weight Method under Risk-Minimizing Scenario 45 4.2.4 Paired T-test based on Jensen’s Alpha under Return- Maximizing Scenario 49 4.2.5 Paired T-test based on Sharpe’s Measure among Mean- Variance Model, Genetic Algorithms, MSCI, S&P500 and Equal Weight Method under Return-Maximizing Scenario 51 4.2.6 Paired T-test based on Treynor’s Measure among Mean- Variance Model, Genetic Algorithms, MSCI, S&P500 and Equal Weight Method under Return-Maximizing Scenario 55 4.2.7 Summary of Paired T-test based on Jensen’s Alpha, Sharpe’s and Treynor’s Measure 59 4.3 Performance Persistence 62 4.3.1 Spearman Rank Correlation Coefficient under Risk- Minimizing Scenario 62 4.3.2 Spearman Rank Correlation Coefficient under Return- Maximizing Scenario 64 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 67 5.1 Conclusions 67 5.2 Suggestions 69 REFERENCES 70 APPENDIX 75

    Abiyev, R. H. and M. Menekay, 2007, “Fuzzy portfolio selection using genetic algorithm”, Soft Computing - A Fusion of Foundations, Methodologies & Applications, Vol. 11 Issue 12, 1157-1163.
    Adler, T. and M. Kritzman, 2007, “Mean–variance versus full-scale optimization: In and out of sample”, Journal of Asset Management, Vol. 7 Issue 5, 302-311.
    Agarwal, V. and N. Y. Naik, 2000, “Multi-Period Performance Persistence Analysis of Hedge Funds”, The Journal of Financial and Quantitative Analysis, Vol. 35, No. 3, 327-342.
    Allen, F. and R. Karjalainen, 1999, “Using Genetic Algorithms to Find Technical Trading Rules”, Journal of Financial Economics, Vol. 51, 245-271.
    Altay-Salih, A., G. Muradoglu and M. Mercan, 2002, “Performance of the efficient frontier in an emerging market setting”, Applied Economics Letters, Vol. 9 Issue 3, 177-183.
    Ballestero, E. and C. Romero, 1996, “Portfolio Selection: A Compromise Programming Solution”, Journal of the Operational Research Society, Vol. 47, No. 11, 1377-1386.
    Ballestero, E., 2005, “Mean-Semivariance Efficient Frontier: A Downside Risk Model for Portfolio Selection”, Applied Mathematical Finance, Vol. 12, No. 1, 1-15.
    Bauer, R., K. Koedijk and R. Otten, 2002, “International evidence on ethical mutual fund performance and investment style”, Journal of Banking & Finance, Vol. 29 Issue 7, 1751-1767.
    Bian, J. S., 1995, “An Genetic-Algorithm Model for Taiwan Stock Index Portfolio” M.A. thesis, Graduate Institute of Information Management, National Chiao Tung University, in Chinese.
    Bollen, N. P. B. and J. A. Busse, 2004, “Short-Term Persistence in Mutual Fund Performance”, The Review of Financial Studies, Vol. 18, No. 2, 569-597.
    Brands, S. and D. R. Gallagher, 2005, “Portfolio selection, diversification and fund-of-funds: a note”, Accounting & Finance, Vol. 45 Issue 2, 185-197.
    Breuer, W. and M. Gurtler, 2006, “Performance Evaluation, Portfolio Selection, and HARA Utility”, European Journal of Finance, Vol. 12 Issue 8, 649-669.
    Broom, M., P. Nouvellet, J. P. Bacon and D. Waxman, 2007, “Parameter-free testing of the shape of a probability distribution”, Biosystems, Vol. 90 Issue 2, 509-515.
    Brown, S. J., and W. N. Goetzmann, 1995, “Performance Persistence”, Journal of Finance, Vol. 50, No. 2, 679-698.
    Capocci, D., A. Corhay and G. Hubner, 2005, “Hedge Fund Performance and Persistence in Bull and Bear Markets”, European Journal of Finance, Vol. 11, No. 5, 361-392.
    Carhart, M. M., 1997, “On persistence in mutual fund performance”, Journal of Finance, Vol. 52, No. 1, 57-82.
    Chang, C. C., 2003, “Construction of Stock Index Simulation Portfolio Using Genetic Algorithm” M.A. thesis, Graduate Institute of Accounting, National Taipei University, in Chinese.
    Chang, T. J., N. Meade, J. E. Beasley and Y. M. Sharaiha, 1998, “Heuristics for cardinality constrained portfolio optimisation” The Management School, Imperial College, London SW7 2AZ, UK.
    Chen, A. H. Y., F. C. Jen and S. Zionts, 1971, “The optimal portfolio revision policy”, Journal of Business, 44, 51-61.
    Chiu, C. R., 1998, “An Application of Genetic Algorithms on Portfolio Strategies” M.A. thesis, Graduate Institute of Economics, National Sun Yat-sen University, in Chinese.
    Cortez, M. D. C. R., D. A. Paxson and M. J. D. R. Armada, 1999, “Persistence in Portuguese mutual fund performance”, European Journal of Finance, Vol. 5 Issue 4, 342-365.
    Crama, Y. and M. Schyns, 2003, “Simulated annealing for complex portfolio selection problems”, European Journal of Operational Research 150, 546-571.
    Deng, X. T., Z. F. Li and S. Y. Wang, 2005, “A minimax portfolio selection strategy with equilibrium”, European Journal of Operational Research, Vol. 166 Issue 1, 278-292.
    Droms, W. G. and D. A. Walker, 2001, “Performance persistence of international mutual funds”, Global Finance Journal, Vol. 12, 237-248.
    Droms, W. G. and D. A. Walker, 2006, “Performance persistence of fixed income mutual funds”, Journal of Economics and Finance, Vol. 30, No. 3, 347-355.
    Elton, E. J., M. J. Gruber and C. R. Blake, 1996, “The Persistence of Risk-Adjusted Mutual Fund Performance”, The Journal of Business, Vol. 69, No. 2, 133-157.
    Goldberg, D. E., 1989, “Genetic Algorithms in Search, Optimization and Machine Learning.” Addison-Wesley Publishing Co..
    Grinblatt, M. and S. Titman, 1992, “The persistence of mutual fund performance”, Journal of Finance, Vol. 47 Issue 5, 1977-1984.
    Harri, A. and B. W. Brorsen, 2004, “Performance persistence and the source of returns for hedge funds”, Applied Financial Economics, Vol. 14 Issue 2, 131-141.
    Holland, J., 1975, “Adaptation in Natural and Artificial System”, MIT Press Cambridge, MA, USA.
    Huang, X., 2006, “Fuzzy chance-constrained portfolio selection”, Applied Mathematics & Computation, Vol. 177 Issue 2, 500-507.
    Jensen, M. C., 1969, “The performance of mutual funds in the period 1945-1964”, Journal of Finance, Vol. 23, No. 2, 389-416.
    Keswani, A. and D. Stolin, 2006, “Mutual fund performance persistence and competition: A cross-section analysis”, The Journal of Financial Research, Vol. 29, No. 3, 349-366.
    Konno, H., 1990, “Piecewise linear risk function and portfolio optimization”, Journal of the Operational Research Society of Japan Vol. 33, No. 2, 139-156.
    Korczak, J. J, 2001, “Portfolio Design and Simulation Using Evolution Based Strategy : University of Worclaw, Poland”.
    Kothari, S. P. and J. B. Warner, 2001, “Evaluating Mutual Fund Performance”, The Journal of Finance, Vol. 56, No. 5, 1985-2010.
    Lai, S. and H. Li, 2008, “The performance evaluation for fund of funds by comparing asset allocation of mean-variance model or genetic algorithms to that of fund managers”, Applied Financial Economics, Vol. 18, 483-499.
    Lintner, J., 1965, “The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets”, Journal of Finance, Dec65, Vol. 20 Issue 4, 587-615.
    Liu, M. K., 2004, “A Research of Non-Normal Distribution Data Transformation”, M.A. thesis, Graduate Institute of Industrial Engineering and Management, Yuan Ze University, in Chinese.

    Markowitz, H., 1952, “Portfolio selection”, Journal of Finance, Vol. 7, Issue 1, 77-91.
    Markowitz, H., P. Todd, G. Xu and Y. Yamane, 1993, “Computation of mean-semivariance efficient sets by the Critical Line Algorithm”, Annals of Operations Research 45, 307-317.
    Oh, K. J., T. Y. Kim and S. Min, 2005, “Using genetic algorithm to support portfolio optimization for index fund management”, Expert Systems with Applications, Vol. 28 Issue 2, 371-379.
    Oh, K. J., T. Y. Kim, S. H. Min and H. Y. Lee, 2006, “Portfolio algorithm based on portfolio beta using genetic algorithm”, Expert Systems with Applications, Vol. 30 Issue 3, 527-534.
    Pogue, G. A., 1970, “An Extension of the Markowitz Portfolio Selection Model to Include Variable Transactions’ Costs, Short Sales, Leverage Policies and Taxes”, Journal of Finance, Vol. 25, No. 5, 1005-1027.
    Porter, G. E. and J. W. Trifts, 1998, “Performance Persistence of Experienced Mutual Fund Managers”, Financial Services Review, Vol. 7, No. 1, 57-68.
    Sharpe, W. F., 1964, “Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk”, Journal of Finance Vol. 19, No. 3, 425-442.
    Sharpe, W. F., 1966, “Mutual fund performance”, Journal of Business, Vol. 39, No. 1, Part 2: Supplement on Security Prices, 119-138.
    Sharpe, W. F., 2007, “Expected Utility Asset Allocation”, Financial Analysts Journal, Vol. 63 Issue 5, 18-30.
    Shapcott, J., 1992, “Index Tracking: Genetic Algorithms for Investment Portfolio Selection”, Edinburgh Parallel Computing Centre, EPCC–SS92–24.
    Shawky, H. A. and D. M. Smith, 2005, “Optimal Number of Stock Holdings in Mutual Fund Portfolios Based on Market Performance”, The Financial Review, Vol. 40 Issue 4, 481-495.
    Treynor, J. L., 1965, “How to rate management of investment funds”, Harvard Business Review 43, 63-75.
    Venugopal, M., S. Subramanian and U. S. Rao, 2004, “Usefulness of Genetic Algorithms Model for Dynamic Portfolio Selection” , Journal of Financial Management & Analysis, Vol. 17, Issue 1, 45-53.
    Yan, W., R. Miao and S. Li, 2007, “Multi-period semi-variance portfolio selection: Model and numerical solution”, Applied Mathematics and Computation, Vol. 194, 128-134.

    下載圖示 校內:2011-06-26公開
    校外:2011-06-26公開
    QR CODE