簡易檢索 / 詳目顯示

研究生: 蘇于庭
Su, Yu-Ting
論文名稱: 模糊推論系統與元啟發演算法之排程策略研究及其於機器人系統之應用與實現
Fuzzy Inference Systems and Metaheuristic Algorithms for Scheduling in Robotics Systems: Applications and Implementations
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 142
中文關鍵詞: 模糊推論系統元啟發演算法旅行商問題機器人系統
外文關鍵詞: Fuzzy inference system, Metaheuristic algorithm, Travelling salesman problem, Robotic systems
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究模糊推論與元啟發演算法整合後的技術,應用機器人系統在不同工作空間的任務排程策略優化。首先,為了證明改進的元啟發演算法能夠有效提升原始演算法的性能,將收斂因子和非線性系統以及混沌理論的元素整合到社會蜘蛛群演算法和政治演算法。通過各種問題測試的結果證實,這種整合方法能夠提高原始算法的性能,相對於其他演算法,表現更優越。
    其次,本文構建一套基於視覺整合的選擇順應性裝配機械手臂,並針對模糊推論系統研究於排程優化決策方法,應用於晶圓檢測排程規劃系統。此系統主要包括兩個階段。第一階段,設計一台具有視覺自動調整辨識特徵點功能的選擇順應性裝配機械手臂,用於檢測晶圓的移載設備。第二階段,開發了一套模糊推論系統結合專家經驗,優化排程程序以完成晶圓檢測,並驗證以最短時間完成所有晶圓檢測項目。
    最後,本文提出一套可解決機器人在室內環境中,通過選擇優先整理物品的位置順序問題。研究過程中,藉由生成不同複雜度的環境數據集,將環境資訊轉換成特徵矩陣,並利用元啟發演算法優化模糊推論系統中的規則庫,改善原有的決策系統,再由特徵矩陣和優化的規則庫嵌入到模糊推論系統,利用旅行商問題確定機器人移動的最佳位置順序。通過模擬與實際場域的測試及實驗,驗證所提方法的有效性,顯著提升機器人的整理能力和效率,並在實際應用中產生重要影響。

    This dissertation primarily investigates the integration of fuzzy inference and metaheuristic algorithms and explores their applications in optimizing scheduling strategies for robot systems in various workspace tasks. Firstly, to demonstrate the enhanced performance of the metaheuristic algorithm, elements such as convergence factors, nonlinear systems, and chaos theory are integrated into the Social Spider Optimization Algorithm and Political Optimization Algorithm. The results of simulation experiments confirm that this integration approach can improve the performance of the original algorithm, making it superior to other algorithms.
    Secondly, this dissertation constructs a vision-based compliant Selective Compliance Assembly Robot arm (SCARA) and conducts research on fuzzy inference systems for scheduling optimization decisions, applied to wafer inspection scheduling planning systems. This system consists of two main stages. In the first stage, a compliant SCARA with visual automatic adjustment of recognition feature points capability is designed for wafer handling. In the second stage, a fuzzy inference system combined with expert knowledge is developed to optimize the scheduling process for wafer inspection, aiming to complete all wafer inspection tasks in the shortest possible time.
    Finally, the challenge of robot-assisted tidying in workspaces is addressed by proposing a decision system for selecting priority sequences of tidying up objects. By generating datasets of varying complexities and incorporating environmental information into feature matrices, the improved metaheuristic algorithm is utilized to optimize the rule base of the fuzzy inference system. The feature matrices and optimized rule base are integrated into the fuzzy inference system, which employs the Traveling Salesman Problem (TSP) to determine the optimal sequence of object arrangement. Through simulation and real-world testing, this dissertation validates the effectiveness of the proposed method, significantly enhancing the robot’s tidying capabilities and efficiency, while making a substantial impact in practical applications.

    摘 要 I Abstract II Acknowledgments IV Contents V List of Figures VIII List of Tables X Chapter 1 Introduction 1 1.1 Related work 1 1.2 Motivation and Literature Surveys 8 1.3 Dissertation Organization 10 Chapter 2 Research on Integrating Metaheuristic Algorithms 12 2.1 Introduction 12 2.2 Application of Bio-Social Swarm Algorithm and Convergence Mechanisms 14 2.2.1 Social Spider Optimization Algorithm 14 2.2.2 Improved Social Spider Optimization Algorithm 18 2.2.3 Benchmark Functions 22 2.2.4 Cart-Pole System Problem 27 2.3 Competitive Behavior Algorithm Applied to Nonlinear and Chaotic Systems 35 2.3.1 Political Optimizer 35 2.3.2 Hybrid Political Optimizer 38 2.3.3 Benchmark Functions 43 2.3.4 CEC-BC-2017 Benchmark Functions 44 2.3.5 Engineering Problems 48 Chapter 3 Vision-Based SCARA and Its Application to Wafer Inspection Workspaces 54 3.1 Introduction 54 3.2 Vision-Based SCARA System 56 3.2.1 SCARA Design 56 3.2.2 Visual Recognition Features System 60 3.2.3 Definition and Positioning of Inspection Environments 61 3.3 Proposed Wafer Inspection Scheduling 68 3.3.1 Wafer Inspection Information 68 3.3.2 Fuzzy Inference System 70 3.3.3 Intelligent Sorting 76 Chapter 4 Research on Service Robots in Tidying up Objects Workspaces 80 4.1 Introduction 80 4.2 Problem Description 82 4.2.1 Environment Description 82 4.2.2 Robot Application Platform Description 83 4.2.3 Description of Tidying Up Objects 85 4.3 Adaptive Fuzzy Inference Decision Strategy Method 87 4.3.1 Methodology Design 87 4.3.2 Fuzzy Inference System 87 4.3.3 Equilibrium Optimizer 92 4.3.4 Methods for Solving Multi-Location Route Optimization Problems 95 4.3.5 Adaptive Fuzzy Inference Decision Strategy 98 Chapter 5 Experiments and Results for Scheduling in Robotics Systems 105 5.1 Vision-Based SCARA System Applied to Wafer Scheduling and Inspection 105 5.1.1 Adjustment Wafer Inspection System Feature Points Experiments 106 5.1.2 Scheduling Experiments 108 5.2 Experimental Results of AFIDS Applied to Algorithms and Deep Learning 113 5.2.1 Correlation Analysis Between Input Feature Matrix and Output Results 113 5.2.2 Selection and Comparison of Feature Properties 115 5.2.3 Rule Table Comparison with Algorithms 116 5.2.4 Comparison Results of AFIDS Integrated with TSP Methods 117 5.2.5 Comparison of Results for Solving TSP Using the TN 120 Chapter 6 Conclusions and Future Work 122 6.1 Conclusions 122 6.2 Future Work 124 Appendices 125 Appendix A 23 Benchmark Functions [19] 125 Appendix B CEC-BC-2017: Definitions of the Functions [25] 128 References 131

    [1] Wafer Handling Robots Market: Revolutionizing Semiconductor Manufacturing. Online [Available]:https://www.rprobotic.com/wafer-handling-robots-market-revolutionizing-semiconductor-manufacturing.html.
    [2] A. Taniguchi, S. Isobe, L. El Hafi, Y. Hagiwara, and T. Taniguchi, “Autonomous planning based on spatial concepts to tidy up home environments with service robots,” Adv. Robot., vol. 35, no. 8, pp. 471-489, 2021.
    [3] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942-1948 vol.4, 1995.
    [3] S. M. Abbas, S. Hassan, and J. Yun, “Augmented reality-based teaching pendant for industrial robot,” in Proceedings of Conference on Control, Automation and Systems, pp. 2210-2213, 2012.
    [4] S. Mirjalili, “The Ant Lion Optimizer,” Advances in Engineering Software, vol. 83, pp. 80-98, 2015.
    [5] E. Cuevas and M. Cienfuegos, “A new algorithm inspired in the behavior of the social-spider for constrained optimization,” Expert Systems with Applications, vol. 41, no. 2, pp. 412-425, 2014.
    [6] A. Jarndal, “Gray Wolf Optimization-Based Modeling Technique Applied to GaN High Mobility Electron Transistors,” IEEE Journal of the Electron Devices Society, vol. 9, pp. 958-965, 2021.
    [7] S. Mirjalilia, A. H. Gandomibf, S. Z. Mirjalili, C. Saremia, H. Farisd and S. M. Mirjalilie, “Salp swarm algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., vol. 114, pp. 163-191, Dec. 2017.
    [8] Q. Askari, I. Younas, and M. Saeed, “Political optimizer: A novel socio-inspired meta-heuristic for global optimization,” Knowl. -Based Syst., vol. 195, May 2020, Art. no. 105709.
    [9] Y. Wang, X. Sun, C. Wang, and H. Tao, “Multi-objective social spider optimization algorithm,” The Journal of Engineering, vol. 2018, no. 16, pp. 1521-1527, 2018.
    [10] A. A. Ewees and M. A. Elaziz, ‘‘Performance analysis of chaotic multiverse Harris hawks optimization: A case study on solving engineering problems,’’ Eng. Appl. Artif. Intell., vol. 88, Feb. 2020, Art. no. 103370.
    [11] M. Kohli and S. Arora, ‘‘Chaotic grey wolf optimization algorithm for constrained optimization problems,’’ J. Comput. Des. Eng., vol. 5, no. 4, pp. 458-472, 2018.
    [12] F. Yu, X. Fu, H. Li, and G. Dong, ‘‘Improved roulette wheel selection-based genetic algorithm for TSP,’’ in Proc. Int. Conf. Netw. Inf. Syst. for Comput. (ICNISC), Wuhan, China, pp. 151-154, Apr. 2016.
    [13] I. S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid genetic algorithms for feature selection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 11, pp. 1424-1437, Nov. 2004.
    [14] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, ‘‘Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,’’ IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240-255, Jun. 2004.
    [15] L. Yunlian and L. Qiang, “An improved grey wolf optimization algorithm for solving constrained optimization problems,” Computer Knowledge and Technology, vol. 14, no. 28, pp. 256-257, 2018.
    [16] T. Faming, Z. Junjie, and W. Qi. “Research on a gray wolf optimization algorithm to improve the nonlinear convergence mode,” Microelectronics and Computer, vol. 36, no. 05, pp. 89-95, 2019.
    [17] M. P. Sari, G. E. Sulisityo, M. Pujiantara, and M. H. Purnomo, “Chaotic Firefly with Tent Map Algorithm for Overcurrent Relay in Meshed Distribution System,” in 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1-6, 2018.
    [18] Z. Zhang, R. Yang, H. Li, Y. Fang, Z. Huang, and Y. Zhang, “Antlion optimizer algorithm based on chaos search and its application,” Journal of Systems Engineering and Electronics, vol. 30, no. 2, pp. 352-365, 2019.
    [19] X. Yao, Y. Liu, and G. M. Lin, “Evolutionary programming made faster,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82-102, Jul. 1999.
    [20] L. Ovalle, H. Ríos, and M. Llama, “Robust output-feedback control for the cart-pole system: a coupled super-twisting sliding-mode approach,” IET Control Theory & Applications, vol. 13, no. 2, pp. 269-278, 2019.
    [21] T.-H. S. Li and M.-Y. Shieh, “Switching-type fuzzy sliding mode control of a cart-pole system,” Mechatronics, vol. 10, no. 1-2, pp. 91-109, January 2000.
    [22] Q. Askari, I. Younas, and M. “Improved Political Optimizer for Complex Landscapes and Engineering Optimization Problems,” Exp. Syst. Appl., vol. 182, November 2021, Art. no. 115178.
    [23] S. Saremi, S. Mirjalili, and A. Lewis, “Biogeography-based optimization with chaos,” Neural Computing and Applications, vol. 25, no. 5, pp. 1077-1097, 2014.
    [24] W. Kaidi, M. Khishe, and M. Mohammadi, ‘‘Dynamic lévy flight chimp optimization,’’ Knowl. -Based Syst., vol. 235, Jan. 2022, Art. no. 107625.
    [25] G. Wu, R. Mallipedi, and S. P. N., “Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization,” National University of Defense Technology Changsha Hunan P.R. China and Kyungpook National University Daegu South Korea and Nanyang Technological University Singapore Technical Report, Sep. 2017. Online [Available]: https://github.com/P-N-Suganthan/CEC2017-BoundContrained.
    [26] A. A. Ewees, M. A. Gaheen, Z. M. Yaseen, and R. M. Ghoniem, “Grasshopper Optimization Algorithm with Crossover Operators for Feature Selection and Solving Engineering Problems,” IEEE Access, vol. 10, pp. 23304-23320, 2022.
    [27] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, ‘‘Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems,’’ Eng. Comput., vol. 29, no. 1, pp. 17-35, Jan. 2013.
    [28] Q. Askari, M. Saeed, and I. Younas, ‘‘Heap-based optimizer inspired by corporate rank hierarchy for global optimization,’’ Expert Syst. Appl., vol. 161, no. 113702, Dec. 2020.
    [29] W. Lei, W. Jiawei, and M. Zezhou, ‘‘Enhancing Grey Wolf Optimizer with Levy Flight for Engineering Applications,’’ IEEE Access, vol. 11, pp. 74865-74897, 2023.
    [30] TECHNICAL DEMO. Online [Available]:
    https://video.universal-robots.com/technical-demo-part-1-on-robot-set-up.
    [31] S. M. Abbas, S. Hassan, and J. Yun, “Augmented reality-based teaching pendant for industrial robot,” in Proceedings of Conference on Control, Automation and Systems, pp. 2210-2213, 2012.
    [32] A. Albalasie, I. Hussain, M. Horoub, S. Khan, S. Ali, and D. Gan, “Design, Prototype, and Control Design Based on Computed Torque Control of Selective Compliance Assembly Robot Arm,” in Proceedings of Conference on CYBER Technology in Automation, Control, and Intelligent Systems, pp. 70-75, 2019.
    [33] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges,” IEEE Access, vol. 6, pp. 6505-6519, 2018.
    [34] H42-20-S300-R(A). Online [Available] https://emanual.robotis.com/docs/en/dxl/pro/h42-20-s300-ra/.
    [35] H54-200-S500-R(A). Online [Available] https://emanual.robotis.com/docs/en/dxl/pro/h54-200-s500-ra/.
    [36] Bayro-Corrochano E. and Kähler D., “Kinematics of robot manipulators in the motor algebra,” in Springer Verlag, Heidelberg, 2001.
    [37] TS2-80 SCARA robot.
    Online [Available]: https://www.staubli.com/en-us/robotics/product-range/6-axis-scara-picker-industrial-robots/4-axis-scara-robots/ts2-80/.
    [38] C. R. Rocha, C. P. Tonetto, and A. Dias, “A comparison between the Denavit-Hartenberg and the screw-based methods used in kinematic modeling of robot manipulators,” Journal of Robotics and Computer-Integrated Manufacturing vol. 27, pp.723-728, 2011.
    [39] J. Liu, F. Jian and J. Liu,” Four Degrees of Freedom SCARA Robot Modeling and Simulation,” in Proceedings of 2014 International Symposium on Computer, Consumer and Control, pp. 410-412, 2014.
    [40] Narayan and A. Singla,” ANFIS based kinematic analysis of a 4-DOFs SCARA robot,” in Proceedings of 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, pp. 205-211, 2017.
    [41] K. Yamafuji, “Development of SCARA robots,” Journal of Robotics and Mechatronics, vol. 31, no. 1, pp. 10-15, 2019.
    [42] D. Chen, Z. Zeng, Y. Guan, H. Zhu, and T. Zhang, “SCARA robots developed with modular method,” in Proceedings of 2020 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 454-459, 2020.
    [43] H. Khan, S. J. Abbasi and M. C. Lee, “DPSO and Inverse Jacobian-Based Real-Time Inverse Kinematics with Trajectory Tracking Using Integral SMC for Teleoperation,” IEEE Access, vol. 8, pp. 159622-159638, 2020.
    [44] Intel® RealSense™ Depth Camera D435i.
    Online [Available] https://www.intelrealsense.com/depth-camera-d435i/.
    [45] S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images by border following,” Computer Vision, Graphics, and Image Processing, vol. 30, no. 1, pp. 32-46, 1985.
    [46] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision With the OpenCV Library. Sebastopol, CA, USA: O’Reilly Media, Inc., 2008.
    [47] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE Transactions on Information Theory, vol. 8, no. 2, pp. 179-187, February 1962.
    [48] Zhihu Huang and Jinsong Leng, “Analysis of Hu's moment invariants on image scaling and rotation,” in Proceedings of Conference on Computer Engineering and Technology, pp. V7-476-V7-480, 2010.
    [49] 8-inch Wafer Prices Rising by Up to 40% in 2021 [Online] Available: https://www.huayuansh.com/8-inch-wafer-prices-rising-by-up-to-40-in-2021/.
    [50] Dummy Wafer.
    Online [Available]: https://www.entegris.com/shop/en/USD/products/specialty-materials/premium-silicon-carbide/supersic-silicon-carbide-components/Dummy-Wafers/p/DummyWafers.
    [51] S. Liu, S. Wang, X. Liu, C.-T. Lin, and Z. Lv, “Fuzzy Detection Aided Real-Time and Robust Visual Tracking Under Complex Environments,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 1, pp. 90-102, Jan. 2021.
    [52] G. F. Becerra, S. P. Martagon, M. A. D.e Villasenor, E. T. Cuautle, L. G. de la Fraga, and I. G. Gomez, “Selection of the Optimal Sizes of Analog Integrated Circuits by Fuzzy Sets Intersection,” IEEE Latin America Transactions, vol. 12, no. 6, pp. 1005-1011, Sept. 2014.
    [53] A. Emam, “Fuzzy Self Tuning of PID Controller for Active Suspension System,” Advances in Powertrains and Automotives, vol.1, no. 1, 34-41,2015.
    [54] N. Abdo, C. Stachniss, L. Spinello, and W. Burgard, “Robot, organize my shelves! Tidying up objects by predicting user preferences,” in Proc. Conf. Robos. and Automat., pp. 1557-1564, 2015.
    [55] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and K. Murase, “Development of human support robot as the research platform of a domestic mobile manipulator,” Robomech J., vol. 6, no. 1, pp. 4, 2019.
    [56] Z. Yan, N. Crombez, J. Buisson, Y. Ruichck, T. Krajnik, and L. Sun, “A Quantifiable Stratification Strategy for Tidy-up in Service Robotics,” in Proc. Conf. on Advanced Robotics and Its Social Impacts (ARSO), pp. 182-187, 2021.
    [57] F. Wang, J. R. G. Olvera, and G. Cheng, “Optimal Order Pick-and-Place of Objects in Cluttered Scene by a Mobile Manipulator,” IEEE Robot. Automat. Lett., vol. 6, no. 4, pp. 6402-6409, Oct. 2021.
    [58] T. Matsushima, Y. Noguchi, J. Arima, T. Aoki, Y. Okita, Y. Ikeda, K. Ishimoto, S. Taniguchi, Y. Yamashita, S. Seto, S. Gu, Y. Iwasawa, and Y. Matsuo, “World Robot Challenge 2020 -- Partner Robot: A Data-Driven Approach for Room Tidying with Mobile Manipulator,” 2022, arXiv:2207.10106.
    [59] J. Piao, H. Jo, and J. -B. Song, “Robotic Tidy-up Tasks using Point Cloud-based Pose Estimation,” in Proc. Conf. on Control, Automation and Systems (ICCAS), Busan, Korea (South), pp. 316-319, 2020.
    [60] J. Piao, H. Jo, and J.-B. Song, “Pose Estimation and Image Matching for Tidy-up Task using a Robot Arm,” Journal of Korea Robotics Society, vol. 16, no. 4., pp. 299-305, 01-Dec-2021.
    [61] D. Zhu, H. Seki, T. Tsuji, and T. Hiramitsu, “Tableware Tidying-Up Robot System for Self-Service Restaurant-Detection and Manipulation of Leftover Food and Tableware-,” Sensors, vol. 22, no. 18, p. 7006, Sep. 2022.
    [62] L. T. H. Lan, T. M. Tuan, T. T. Ngan, L. H. Son, N. L. Giang, V. T. Nhu Ngoc, and P. V. Hai, “A New Complex Fuzzy Inference System with Fuzzy Knowledge Graph and Extensions in Decision Making,” IEEE Access, vol. 8, pp. 164899-164921, 2020.
    [63] A. Hawbani, E. Torbosh, X. Wang, P. Sincak, L. Zhao, and A. Al-Dubai, “Fuzzy-Based Distributed Protocol for Vehicle-to-Vehicle Communication,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 3, pp. 612-626, March 2021.
    [64] D. Dell’Anna and A. Jamshidnejad, “Evolving fuzzy logic systems for creative personalized socially assistive robots,” Engineering Applications of Artificial Intelligence, vol. 114, pp. 105064, 2022.
    [65] M. S. Gharajeh and H. B. Jond, “Hybrid global positioning system-adaptive neuro-fuzzy inference system based autonomous mobile robot navigation,” Robotics and Autonomous Systems, vol. 134, 2020, Art. no. 103669.
    [66] M. S. Gharajeh and H. B. Jond, “An intelligent approach for autonomous mobile robots path planning based on adaptive neuro-fuzzy inference system,” Ain Shams Eng. J., May 2021, Art. no. 101491.
    [67] M. Haider, Z. Wang, A. Khan, H. Ali, H. Zheng, S. Usman, R. Kumar, M. Bhutta, and P. Zhi, “Robust mobile robot navigation in cluttered environments based on hybrid adaptive neuro-fuzzy inference and Sensor Fusion,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, pp.9060-9070, 2022.
    [68] Z. Wang, H. Duan, and X. Zhang, “An improved greedy genetic algorithm for solving travelling salesman problem,” in Proc. IEEE Int. Conf. Nat. Comput., pp. 374-378, 2009.
    [69] Y. Luo, W. Ding, and B. Zhang, “Optimization of task scheduling and dynamic service strategy for multi-UAV-enabled mobile-edge computing system,” IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 3, pp. 970-984, Sep. 2021.
    [70] P. Zhang, J. Wang, Z. Tian, S. Sun, J. Li, and J. Yang, “A genetic algorithm with jumping gene and heuristic operators for traveling salesman problem,” Appl. Soft Comput., vol. 127, Sep. 2022, Art. no. 109339.
    [71] Y. Liu and B. Cao, “A novel ant colony optimization algorithm with Levy flight,” IEEE Access, vol. 8, pp. 67205-67213, 2020.
    [72] B. A. S. Emambocus, M. B. Jasser, M. Hamzah, A. Mustapha and A. Amphawan, “An enhanced swap sequence-based particle swarm optimization algorithm to solve TSP,” IEEE Access, vol. 9, pp. 164820-164836, 2021.
    [73] S. K. Hadia, A. H. Joshi, C. K. Patel, and Y. P. Kosta, “Solving city routing issue with particle swarm optimization,” International Journal of Computer Applications, vol. 47, no. 15, 2012.
    [74] A. Ometov, A. Mezina, and J. Nurmi, “On applicability of imagery-based CNN to computational offloading location selection,” IEEE Access, vol. 11, pp. 2433-2444, 2023.
    [75] R. Zhang, C. Zhang, Z. Cao, W. Song, P. Tan, J. Zhang, B. Wen, and J. Dauwels, “Learning to solve multiple-TSP with time window and rejections via deep reinforcement learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 1, pp. 1325-1336, Jan. 2023.
    [76] D. Scott, S. G. Manyam, D. W. Casbeer, and M. Kumar, “A Lagrangian algorithm for multiple depot traveling salesman problem with revisit period constraints,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 1, pp. 690-702, Jan. 2023.
    [77] C.-Y. Yang and T.-H. S. Li, ‘‘Keyframe-based simultaneous localization and mapping using LiDAR and camera integration and its application to autonomous mobile robot,’’ in Proc. Conf. ARIS, Taipei, Taiwan, pp. 1-10, Aug. 2022.
    [78] C. Wang, Y. Qian, W. Ding, and X. Fan, “Feature selection with fuzzy rough minimum classification error criterion,” IEEE Trans. Fuzzy Syst., vol. 30, no. 8, pp. 2930-2942, Aug. 2022.
    [79] J. Chen, Y. Lin, J. Mi, S. Li, and W. Ding, “A spectral feature selection approach with kernelized fuzzy rough sets,” IEEE Trans. Fuzzy Syst., vol. 30, no. 8, pp. 2886-2901, Aug. 2022.
    [80] M. E. Hosney, W. M. Mohamed, A. A. Ali, and E. M. G. Younis, ‘‘Fuzzy based hunger games search algorithm for global optimization and feature selection using medical data,’’ Neural Comput. Appl., vol. 35, no. 7, pp. 5251-5275, Nov. 2022.
    [81] D. Kukolj, “Design of adaptive Takagi-Sugeno-Kang fuzzy models,” Applied Soft Computing, vol. 2, no. 2, pp. 89-103, 2002.
    [82] C.-S. Chiu, Y.-L. Ouyang, and C.-Y. Ku, “Terminal sliding mode control for maximum power point tracking of photovoltaic power generation systems,” Sol. Energy, vol. 86, no. 10, pp. 2986-2995, 2012.
    [83] F. Piltan and N. B. Sulaiman, “Review of sliding mode control of robotic manipulator,” World Applied Sciences Journal, vol. 18, pp. 1855-1869, 2012.
    [84] F. T. Soares, N. L. Cappelli, A. P. Garcia, and C. K. Umezu, “Fuzzy control applied to an electrical power generation system mounted on tractors for driving of agricultural implements,” Journal of the Brazilian Association of Agricultural Engineering, Jaboticabal, vol. 36, no. 5, pp. 846-857, 2016.
    [85] C. -D. Liang, M. -F. Ge, Z. -W. Liu, X. -S. Zhan, and J. H. Park, “Predefined-time stabilization of T-S fuzzy systems: a novel integral sliding mode-based approach,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 10, pp. 4423-4433, Oct. 2022.
    [86] J. Boo and D. Chwa, “Fuzzy integral sliding mode observer-based formation control of mobile robots with kinematic disturbance and unknown leader and follower velocities,” IEEE Access, vol. 10, pp. 76926-76938, 2022.
    [87] A. Faramarzi, M. Heidarinejad, B. Stephens and S. Mirjalili, “Equilibrium optimizer: A novel optimization algorithm,” Knowl. - Based Syst., vol. 191, Mar. 2020, 105190. https://doi.org/10.1016/j.knosys.2019.105190.
    [88] A. Taniguchi, S. Isobe, L. Hafi, Y. Hagiwara, and T. Taniguchi, “Autonomous Planning Based on Spatial Concepts to Tidy Up Home Environments with Service Robots,” 2020, arXiv:2002.03671.
    [89] N. Abdo, C. Stachniss, L. Spinello, and W. Burgard, “Robot, organize my shelves! tidying up objects by predicting user preferences,” in Proc. Int. Conf. Robot. Automat., pp. 1557-1564, 2015.
    [90] J.I. Obianyo, R.C. Udeala, and G.U. Alaneme, “Application of neural networks and neuro-fuzzy models in construction scheduling,” Sci. Rep., vol.13, no.8199, 2023.
    [91] S Raheja, M Alshehri, AA Mohamed, S Khaitan, M Kumar, and T Stephan, “A smart intuitionistic fuzzy-based framework for round-robin short-term scheduler,” J. Super comput. vol.78, pp. 4655-4679, 2022.
    [92] Y. L. Goh, W. S. Lee, X. Bresson, T. Laurent, and N. Lim, “Combining Reinforcement Learning and Optimal Transport for the Traveling Salesman Problem,” 2022, arXiv:2203.00903.
    [93] X. Bresson and T. Laurent, “The transformer network for the traveling salesman problem,” 2021, arXiv:2103.03012.
    [94] C. Lin, D. Deng, Y. Chih, and H. Chiu, “Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4276-4284, July 2019.
    [95] M. Abe, M. Matsumoto, and C. Kuroda, “An artificial neural network optimized by a genetic algorithm for real-time flow-shop scheduling,” in Proceedings of KES’2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (cat. no.00TH8516), pp. 329-332 vol.1, 2000.
    [96] Y. Wang and Q. Zhu, “A Hybrid Genetic Algorithm for Flexible Job Shop Scheduling Problem With Sequence-Dependent Setup Times and Job Lag Times,” IEEE Access, vol. 9, pp. 104864-104873, 2021.
    [97] I. Lee, R. Sikora, and M. J. Shaw, “A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 27, no. 1, pp. 36-54, Feb. 1997.
    [98] Z. Yang and H. Ren, ‘‘Feature extraction and simulation of EEG signals during exercise-induced fatigue,’’ IEEE Access, vol. 7, pp. 46389-46398, 2019.
    [99] Y. Liu, Y. Mu, K. Chen, Y. Li, and J. Guo, ‘‘Daily activity feature selection in smart homes based on pearson correlation coefficient,’’ Neural Process. Lett., vol. 51, no. 2, pp. 1771-1787, Jan. 2020.
    [100] M. Murtaza, M. Sharif, M. Yasmin, M. Fayyaz, S. Kadry, and M. Y. Lee, ‘‘Clothes retrieval using M-AlexNet with mish function and feature selection using joint Shannon’s entropy Pearson’s correlation coefficient,’’ IEEE Access, vol. 10, pp. 115469-115490, 2022.
    [101] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv. Neural Inf. Process. Syst., pp. 5998-6008, 2017.
    [102] B. Akay and D. Karaboga, “Artificial bee colony algorithm for large-scale problems and engineering design optimization,” J. Intell. Manuf., vol. 23, no. 4, pp. 1001-1014, 2012.
    [103] S. Mirjalili and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp. 46-61, Mar. 2014.
    [104] S. Mirjalili, “SCA: A sine cosine algorithm for solving optimization problems,” Knowl. - Based Syst., vol. 96, pp. 120-133, Mar. 2016.
    [105] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng. Softw., vol.95, pp.51-67, May. 2016.
    [106] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, ‘‘Harris hawks optimization: Algorithm and applications,’’ Future Gener. Comput. Syst., vol.97, pp.849-872, Aug. 2019.
    [107] A. Ezugwu, J. Agushaka, L.Abualigah, S. Mirjalili, and A. H.Gandomi,‘‘Prairie dog optimization algorithm,’’ Neural Comput. Appl., vol.34, no.22, pp.20017-20065, Nov. 2022.
    [108] B. Abdollahzadeh, F. Gharehchopogh, N. Khodadadi, and S. Mirjalili, ‘‘Mountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems,’’ Adv. Eng. Softw., vol. 174, Dec. 2022, Art. no. 103282.
    [109] Y. L. Zheng, L. H. Ma, L. Y. Zhang, and J. X. Qian, ‘‘On the convergence analysis and parameter selection in particle swarm optimization,’’ in Proc. Int. Conf. Mach. Learn. Cybern., pp. 1802 - 1807, vol. 3, Dec. 2003.
    [110] C. Chauhan, R. Gupta, and K. Pathak, ‘‘Survey of methods of solving TSP along with its implementation using dynamic programming approach,’’ Int. J. Comput. Appl., vol. 52, no. 4, pp. 12 - 19, Aug. 2012.

    無法下載圖示 校內:2028-11-15公開
    校外:2028-11-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE