| 研究生: |
劉琪華 Liu, Chi-Hua |
|---|---|
| 論文名稱: |
半線性橢圓型方程的變號一次解,長波短波交互作用型系統及某類傳導介質系統之均質化極限 2-Nodal Solutions for Semilinear Elliptic Equations, a System of Long Wave-Short Wave Interaction and Homogenization Limit of Certain System for Conducting Media |
| 指導教授: |
林琦焜
Lin, Chi-Kun 方永富 Fang, Yung-fu 吳宗芳 Wu, Tsung-fang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 半線性橢圓型方程 、Nehari 流形 、變號一次解 、廣義質心映射 、纖維化映射 、巴萊-斯麥爾序列 、半古典分析 、薛丁格-KdV 系統 、長波 、短波 、守恆律 、均質化 、馬克斯韋爾系統 、傳導介質 、渥特拉積分方程 、楊氏測度 、記憶效應 |
| 外文關鍵詞: | semilinear elliptic problem, Nehari manifold, 2–nodal solutions, generalized barycenter map, fibering map, Palais–Smale sequence, Schr¨odinger-Korteweg-de Vries system, semiclassical limit, short wave, long wave, conservation law, Homogenization, conducting media, Maxwell equation, Volterra integral equation, Young’s measure, memory (nonlocal) effect |
| 相關次數: | 點閱:201 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部份: 我們致力於改進並推廣在D. Cao and E. S. Noussair
[Multiplicity of positive and nodal solutions for nonlinear elliptic problems in R^N, Ann. Inst. H. Poincare Anal. Nonlineire 13 (1996) 567-588] 這篇文章中的結果。得到的變號一次解之正部與負部分別集中靠近在權函數的極大點處。經由一個動態系統的探討,可得到一個變號函數的連續體並建立了巴萊-斯麥爾序列。我們因此有了變號一次解之個數的新下界。
第二部份:我們研究一個長波、短波交互作用的模型,自然出現在流體動力學及電漿物理之薛丁格-KdV 系統的流體力學結構及半古典分析。
第三部份:我們主要是探討由馬克斯韋爾系統均質化導出的記憶效應。其記憶核可由渥特拉積分方程來描述,並可藉由楊氏測度來確認。由動力方程化可允許我們去獲得能量密度的均質化以及相關的守恒律。
Part I
In part one, we are devoted to improve and generalize the results on D. Cao and E. S. Noussair [Multiplicity of positive and nodal solutions for nonlinear elliptic problems in R^N, Ann. Inst. H. Poincar´e Anal. Non
Lineair´e 13 (1996) 567–588]. The 2–nodal solutions we obtain have their positive and negative parts concentrate near the set of maximum points of weight functions. Via a dynamical systems approach, we get a continuum
of sign–changing functions to exhibit a Palais–Smale sequence. We establish new lower bounds for the number of 2–nodal solutions.
Part II
We study the semiclassical limit of the Schr¨odinger-Korteweg-de Vries system which appears naturally in fluid dynamics and plasma physics as a model of interaction between a short wave and a long wave.
Part III
We study the memory effect induced by homogenization of the Maxwell system for conducting media. The memory kernel is described by the Volterra integral equation. It can be characterized explicitly in terms of Young’s measure and the kinetic formulation allows us to obtain the
homogenization of the energy density and the associated conservation law with the Poynting vector.
Part I
[1] R. A. Adams, Sobolev space, Academic Press, New York, 1975.
[2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349–381.
[3] A. Bahri and Y. Y. Li, On the min-max procedure for the existence of a positive solution for certain scalar field equations in RN, Rev. Mat. Iberoamericana 6 (1990) 1–15.
[4] A. Bahri and P. L. Lions, On the existence of positive solutions of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 14 no. 3 (1997) 365–413.
[5] T. Bartsch, Critical point theory in partially ordered Hilbert spaces. J. Funct. Anal. 186 (2001) 117-152.
[6] T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2–nodal solutions of a semiclassical nonlinear Schr/”odinger equation. Math. Ann. (2007) 338: 147–185
[7] T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology Ann. Inst. H. Poincar´e Anal. Non Lineair´e 22 (2005) 259–281.
[8] T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Top. Meth. Nonl. Anal. 22, 2003, 1–14.
[9] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of ground state, Arch. Ration. Mech. Anal. 82 (1983) 313–345.
[10] H. Br´ezis, Analyse Fonctionnelle, Theorie et Applications, Masson, Paris, 1983. [11] H. Br´ezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer Math. Soc. 88 (1983) 486–490.
[12] H. Br´ezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44(1991), 939-963.
[13] D. M. Cao, Positive solutions and bifurcation from essential spectrum of semilinear elliptic equation on RN, Nonlinear Analysis:TMA 15 (1990) 1045–1052.
[14] D. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in RN, Ann. Inst. H. Poincar´e Anal. Non Lineair´e 13 no. 5 (1996) 567–588.
[15] A. Castro and M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity 16 (2003) 579–590.
[16] A. Castro, J. Cossio, J. Neuberger, A sign changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 (1997) 1041-1053.
[17] G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations 17 (2003) 257–281.
[18] M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric doamin, Calc. Var. Partial Differential Equations 21 (2004) 1–14.
[19] M.F. Furtado, A note on the number of nodal solutions of an elliptic equation with symmetry, Appl. Math. Lett. 19 (2006) 326-331.
[20] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second order, Springer-Verlag, New York, 1983.
[21] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing
Program, Boston, London, Melbourne, 1985.
[22] H.C. Huang, T.F. Wu, Four 2-nodal solutions for a semilinear elliptic equation in a finite strip with a hole, J. Math. Appl. 328 (2007) 567-576.
[23] M. K. Kwong, Uniqueness of positive solution of _u−u+up = 0 in RN, Arch. Rat. Math. Anal. 105 (1989) 243–266.
[24] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications (Academic Press. New york, 1980).
[25] Y. Li, Remarks on a semilinear elliptic equation on RN, J. Differential Equations 74 (1988) 34–49.
[26] P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case I,II, Ann. Inst. H. Poincar´e Anal. Non Lineair´e 1 (1984) 102–145 and 223-283.
[27] E. M¨uller-Pfeiffer, On the number of nodal domains for eigenfunctions of elliptic differential operators, J. London Math. Soc. (2) 31 (1985) 91–100.
[28] W. M. Ni and I. Takagi, On the shape of least energy solution to a Neumann problem, Comm. Pure Appl. Math. 44 (1991) 819–851.
[29] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986.
[30] M. Struwe, Variational methods, Springer-Verlag, Bertin-Heidelberg, Second edition, 1996.
[31] H. C. Wang, Nonlinear Analysis, National Tsing Hua University Press, December 2003.
[32] H. C. Wang, Palais-Smale approaches to semilinear elliptic equations in unbounded domains, Electronic Journal of Differential Equations, Monograph 06, 2004, (142pages).
[33] H. C.Wang and T. F.Wu, Symmetry breaking in a bounded symmetry domain, Nonlinear Differential Equations Appl. 11 (2004) 361–377.
[34] M. Willem, Minimax Theorems, Birkh¨auser, Boston, 1996.
[35] Tsung-fang Wu, Dissertation, National Tsing Hua University.
[36] T.F. Wu, Multiplicity of nodal solutions for elliptic problems involving non-odd nonlinearities, Nonlinear Anal. TMA 67 (2007) 1746-1757.
[37] E. Zeidler, Nonlinear functional analysis and it Applications I, Fixed-point theorems, Springer, New Youk 1986.
[38] E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1989.
Part II
[1] J. Albert and J. A. Pava, Existence and stability of ground-state solutions of a Schr¨odinger-KdV system, Proceeding of the Royal Society of Edinburgh, 133(2003), 987–1029.
[2] D. Bekiranov, T. Ogawa and G. Ponce, On the well-posedness of Benney’s equation of short and long waves, Advances in Differential Equations, 1(1996), 919–937.
[3] D. Bekiranov, T. Ogawa and G. Ponce, Weak solability and well-posedness of a coupled Schr¨odinger-Korteweg de Vries equation for capillary-gravity wave interaction, Proc. Amer. Math. Soc., 125(1997), 2907–2919.
[4] D. Bekiranov, T. Ogawa and G. Ponce, Interaction equation for short and long dispersive waves, J. Funct. Anal., 158(1998), 357–388.
[5] Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible euler equations. Comm. Partial Diff. Equations 25, 737-754 (2000)
[6] T. Colin and A. Soyeur, Some singular limits for evolutionary Ginzburg Landau equations, Asymptotic Analysis, 13(1996), 361–372.
[7] B. Desjardins, C.-K. Lin and T. C. Tso, Semiclassical limit of the derivative nonlinear Schr¨odinger equation, Math. Models Methods Appl. Sci., 10(2000), 261–285.
[8] B. Desjardins and C.-K. Lin, On the semiclassical limit of the general modified NLS equation, J. Math. Anal. Appl., 260(2001), 546–571.
[9] V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech., 79(1977), 703–714.
[10] E. Grenier, Semiclassical limit of the nonlinear Schr¨odinger equation in small time, Proc. Amer. Math. Soc., 126(1998), 523–530.
[11] S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math., 52(1999), 613–654.
[12] V. I. Karpman, On the dynamics of sonic-Langmuir soliton, Physica Scripta 11(1975), 263-265.
[13] S. Klainerman and A. Majda, Singular limits and quasilinear systems with large parameter and the incompressible limit of compressible fluids, Comm. Pure and Appl. Math., 34(1981), 481–524.
[14] J.-H. Lee and C.-K. Lin, The behavior of solutions of NLS equation of derivative type in the semiclassical limit, Chaos, Solitons & Fractals, 13(2002), 1475–1492.
[15] J.-H. Lee, C.-K. Lin and Oktay K. Pashaev, Shock waves, Chiral solitons and semiclassical limit of one-dimensional anyons, Chaos, Solitons & Fractals, 19(2004), 109–128.
[16] H.-L. Li and C.-K. Lin, Semiclassical limit and well-posedness of nonlinear Schr¨odinger-Poisson systems, E. Journal of Differential Equations, 2003(2003), 1–17.
[17] H.-L. Li and C.-K. Lin, Zero Debye length asymptotic of the quantum hydrodynamic model for semiconductors, Commun. Math. Phys., 256(2005), 195–212.
[18] F.-H. Lin, and J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schr¨odinger equation, Commun. in Math. Phys., 200(1999), 249–274.
[19] F.-H. Lin, and P. Zhang, Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain. Arch. Rat. Mech. Anal. 179, 79-107 (2005)
[20] T.-C. Lin, and P. Zhang, Incompressible and compressible limits of coupled systems of nonlinear Schr¨odinger equations. Commun. Math. Phys. 266, 547-569(2006)
[21] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sci., 53, Springer-Verlag, (1984).
Part III
[1] R. Alexandre, Some results in homogenization tackling memory effects, Asymptotic Analysis, 15 (1997), 229–259.
[2] R. Alexandre, Propagation of electromagnetic waves in non-homogeneous media, Appl. Math., 49 (2004), 201–225.
[3] G. Allaire, “Homogenization and Applications to Material Sciences,” Lecture Note at Newton Institute, Cambridge, 1999.
[4] Y. Amirat, K. Hamdache and A. Ziani, Kinetic formulation for a transport equation with memory, Commun. in Partial Differential Equations, 16 (1991), 1287–1311.
[5] Y. Amirat, K. Hamdache and A. Ziani, Some results on homogenization of convection-diffusion equations, Arch. Rational Mech. Anal., 114 (1991), 155– 178.
[6] Y. Amirat, K. Hamdache and A. Ziani, On homogenization of ordinary differential equations and linear transport equations, In: Calculus of Variations, Homogenization and Continuum Mechanics, (eds. G. BOUCHITT´E, G. BUTTAZZO and P. SUQUET), World Scientific, (1994), 29–50.
[7] N. Antoni´c, Memory effects in homogenization linear second-order equations, Arch. Rational Mech. Anal., 125 (1993), 1–24.
[8] G. Barbatis and I. G. Stratis, Homogenization of Maxwell’s equations in dissipative bianisotropic media, Math. Methods Appl. Sci., 26 (2003), 1241–1253.
[9] A. Bensoussan, J.-L. Lions and G. Papanicolaou, “Asymptotic Analysis for Periodic Structures,” North-Holland, Amsterdam-New York-Oxford, 1978.
[10] A. Bossavit, G. Griso and B. Miara, Modelling of periodic electromagnetic structures.
Bianisotropic materials with memory effects, J. Math. Pures Appl., 84
(2005), 819–850.
[11] E. De Giorgi, Some remarks on _-convergence and least squares method, In Composite Media and Homogenization Theory, (ed. Dall Maso and Dell’Antonio), Birkh¨auser, Boston, (1991), 135–142.
[12] J. S. Jiang and C. K. Lin, Homogenization of the Dirac-like system, Mathematical Models and Methods in Applied Sciences, 11 (2001), 433–458.
[13] J. S. Jiang, K. H. Kuo and C. K. Lin, Homogenization of second order equation with spatial dependent coefficient, Discrete and Continue Dynamical System, 12 (2005), 303–313.
[14] J. S. Jiang, K. H. Kuo and C. K. Lin, Homogenization and memory effect of a 3×3 system, Journal of Mathematics of Kyoto University, 45 (2005), 429–447.
[15] V. V. Jikov, S. M. Kozlov and O. A. Oleinik, “Homogenization of Differential Operators and Integral Functionals,” Springer-Verlag, 1994.
[16] T. Kato, “Perturbation Theory for Linear Operators,” Springer-Verlag, 1966.
[17] P. Markowich and F. Poupaud, The Maxwell equation in a periodic medium: homogenization of the energy density, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 301–324.
[18] A. Pazy, “Semigroups of Linear Operators and Applications to Partial Differential Equations,” Applied Mathematical Aciences Vol. 44, Springer-Verlag, 1983.
[19] E. Sanchez-Palencia, “Non-homogeneous Media and Vibration Theory,” Lecture Note in Physics, 127, Springer-Verlag, Berlin and New York, 1980.
[20] L. Tartar, Remark on homogenization, In Homogenization and effective moduli
of materials and media, (ed. J. L. ERICKSEN et al.), Springer-Verlag, New York,
(1986), 228–246.
[21] L. Tartar, Nonlocal effects induced by homogenization, In “Partial Differential
Equations and the Calculus of Variations II” (ed. F. COLOMBINI et al.), (1989),
925–937.
[22] L. Tartar, Memory effects and homogenization, Arch. Rational Mech. Anal.,
111 (1990), 121–133.
[23] N. Wellander and G. Kristensson, Homogenization of the Maxwell equations at
fixed frequency, SIAM J. Appl. Math., 64 (2003), 170–195.
[24] N.I. Ahiezer and M. Krein, Amer. Math.Soc., Providence, 1962.
[25] L.C. Evans, Weak convergence methods for nonlinear
partial differential equations, Amer. Math. Soc., Providence, 1990.