簡易檢索 / 詳目顯示

研究生: 翁凱光
Aung Kaung Myat
論文名稱: 利用DDA-MPS數值分析法模擬地滑引致湧浪之研究
Numerical Simulations in Landslide induced Mega Waves using Coupling DDA-MPS
指導教授: 吳建宏
Wu, Jian-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 130
外文關鍵詞: Landslide-induced mega waves, Discontinuous Deformation Analysis (DDA),, Moving Particle Semi-implicit (MPS), Coupling DDA-MPS method
相關次數: 點閱:161下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ABSTRACT

    Extreme weathers induced by global climate changes can trigger extraordinary landslides by multiple mechanisms such as intense rainfall, gradual glacial melting, significant groundwater level change, terrible stream erosion, huge vegetation loss and many other intense geological, environmental, hydrological, seismic, artificial reasons. These unusual landslides near streams, rivers, dams, etc. can generate mega waves and huge inundations to surrounding and downstream areas which can lead to tragedies, loss of lives and infrastructure damages. The famous 1958 Lithuya Bay tsunami in Alaska, USA caused by a large-scale subaerial landslide generated 524m mega wave which is the world’s highest tsunami wave well recorded in history. The catastrophic 1963 Vajont giant subaerial landslide-induced mega waves with 245m wave run-up height triggered at Vajont dam, Erto e Casso, Italy which tragically killed about 2500 lives. In 1998, a submarine landslide-induced impulsive waves occurred at Sissano Lagoon, North Coast, Papua New Guinea with 15m peak wave run-up elevation and over 2200 deaths. Moreover, a recent 2015 Tann Fjord landslide at Icy Bay, Alaska, USA produced impulsive waves about 193m in maximum run-up wave elevation. These historical events warn us the disastrous large-scale landslides can happen not only in lands but also underwater areas and related consequences of giant and immense waves can cause tragic disaster events with terrible casualties. Therefore, the study on the landslide-induced mega waves becomes popular and plays an important role in the disaster mitigations and managements.
    This study emphasizes on the landslide-induced mega waves and related maximum wave run-up. Discontinuous Deformation Analysis (DDA) method offers great effectiveness in solving of engineering problems including landslides and related hazards. Moving Particle Semi-implicit (MPS) method provides special solutions in fluid dynamic problems including incompressible flows. Combination of these two methods can lead a solution to the typical solid-fluid interaction related problems. A recent coupling 2D DDA-MPS method is successfully developed and is ready to challenge the upcoming solid-fluid interaction related problems. The classical validation tests for both particular methods such as block-sliding test of single DDA method and dam-break test of single MPS method, and for the coupled method such as landslide-generated waves test are implemented and investigated step by step to achieve the final goal of the case studies of past event validation tests in the Taan Fjord landslide area in Alaska, USA and future event prediction scenarios in the potential Nanhua No.1 dip-slope landslide area in Taiwan together with the simulations and validations compared to the analytical solutions, previous studies and empirical formulae by using the coupling DDA-MPS method. As the coupling method is recently developed and new for the studies related with the landslide-induced mega waves, it is an interesting thing to find out the effectiveness, performance and degree of reliability for the simulations, especially for the experimental tests and practical case studies. Thus, challenges and correctness of the coupled DDA-MPS method will be discovered and discussed in this study for the landslide-induced mega waves from the disaster mitigation and prevention aspect.

    Keywords: Landslide-induced mega waves, Discontinuous Deformation Analysis (DDA), Moving Particle Semi-implicit (MPS), Coupling DDA-MPS method

    CONTENTS ABSTRACT I ACKNOWLEDGEMENT II CONTENTS III LIST OF TABLES V LIST OF FIGURES VII NOMENCLATURE XIII CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Motivation 6 1.3 Objectives, Scopes of Study and Methodology 10 CHAPTER 2 LITERATURE REVIEW 12 2.1 Empirical Methods 12 2.1.1 Wave Generation 12 2.1.2 Wave Run-up 16 2.2 Numerical Methods 20 2.2.1 Discontinuous Deformation Analysis (DDA) 20 2.2.2 Moving Particle Semi-implicit (MPS) 30 2.2.3 Solid-Fluid Interaction Works 38 CHAPTER 3 COUPLING DDA-MPS METHOD 45 3.1 Coupling DDA-MPS Model 45 3.1.1 Basic Concepts 45 3.1.2 Action of Force from Fluid Particles to Block 46 3.1.3 Procedure 47 CHAPTER 4 NUMERICAL MODELS 49 4.1 Validation Tests 49 4.1.1 Block-sliding Test 49 4.1.1.1 Geometry Setup and Parameters 50 4.1.2 Dam-break Test 51 4.1.2.1 Geometry Setup and Parameters 52 4.1.3 Landslide-generated Waves Test 54 4.1.3.1 Geometry Setup and Parameters 54 4.2 Case Studies 56 4.2.1 Taan Fjord Landslide-induced Mega Waves Test 57 4.2.1.1 Geometry Setup and Parameters 59 4.2.2 Nanhua No.1 Dip-slope Landslide-induced Mega Waves Scenario 65 4.2.2.1 Geometry Setup and Parameters 66 CHAPTER 5 RESULTS AND DISCUSSIONS 73 5.1 Validation Tests Results 73 5.1.1 Block-sliding Test Result 73 5.1.2 Dam-break Test Result 76 5.1.3 Landslide-generated Waves Test Result 81 5.2 Case Studies Result 86 5.2.1 Taan Fjord Landslide-induced Mega Waves Test Result 86 5.2.2 Nanhua No.1 Dip-slope Landslide-induced Mega Waves Scenario Result 98 CHAPTER 6 CONCLUSIONS AND SUGGESTIONS 109 6.1 Summary 109 6.2 Future Works 110 REFERENCES 111 APPENDIX 121

    REFERENCES

    Cheng, Y. M. (1998). “Advancements and improvement in discontinuous deformation analysis”. Comput. Geotech., 22(2), 153-163.
    Davies, H. L., Davies, J. M., Perembo, R. C. B. & Lus, W. Y. (2003). “The Aitape 1998 tsunami: reconstructing the event from interviews and field mapping”. Pure Appl. Geophys., 160, 1895–1922.
    Di Risio, M. (2005). “Landslide generated impulsive waves: generation, propagation and interaction with plane slopes”. An experimental and analytical study, PhD thesis, University of Roma Tre, Rome.
    Di Risio, M., Girolamo, P. D. & Beltrami, G. M. (2011). “Forecasting landslide generated tsunamis: A review”. In (Ed.), The Tsunami Threat - Research and Technology, Intech Open, ISBN 978-953-307-552-5/ISSN, 26.
    Dufresne, A., Geertsema, M., Shugar, D. H., Koppes, M., Higman, B., Haeussler, P. J., Stark, C., Venditti, J. G., Bonno, D., Larsen, C., Gulick, S. P. S., McCall, N., Walton, M., Loso, M. G. & Willis, M. J. (2018). “Sedimentology and geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska”. Sediment. Geol., 364, 302–318.
    Fine RA, Millero FJ (1973) Compressibility of water as a function
    of temperature and pressure. J Chem Phys 59(10):5529–553
    Fine, R. A. & Millero, F, J. (1973). “Compressibility of water as a function of temperature and pressure”. J. Chem. Phys., 59(10), 5529–553.
    Fritz, H. M., Hager, W. H. & Minor, H. E. (2001). “Lituya Bay case: Rockslide impact and wave run-up.” Sci. Tsunami Hazards, 19(1), 3–22.
    Fritz, H. M., Hager, W. H. & Minor, H. E. (2004). “Near field characteristics of landslide generated impulse waves”. J. Waterw. Port. Coast. Ocean Eng., 130 (6), 287-302.
    Franco, A., Moernaut, J., Muntau. B. S., Strasser, M. & Gems, B. (2021). “Triggers and consequences of landslide-induced tsunamis – 3D dynamic reconstruction of the Taan Fiord 2015 tsunami event”. Eng. Geol., 294, 106384.
    Fuhrman, D. R. & Madsen, P. A. (2008). “Simulation of nonlinear wave run-up with a high-order Boussinesq model”. Coast. Eng., 55(2), 139-154.
    Fu, L. & Jin, Y. C. (2015). “Investigation of non-deformable and deformable landslides using meshfree method”. Ocean Eng., 109, pp. 192-206.
    Fuchs, H. & Hager, W. H. (2015). “Solitary impulse wave transformation to overland flow”. J. Waterw. Port, Coast. Ocean Eng., 141 (5), 04015004.
    Fu, X., Sheng, Q., Zhang, Y. & Chen J. (2015). “Investigations of the sequential excavation and reinforcement of an underground cavern complex using the discontinuous deformation analysis method”. Tunn. Undergr. Sp. Tech., 50, 79–93.
    George, D. L., Iverson, R. M. & Cannon, C. M. (2017). “New methodology for computing tsunami generation by subaerial landslides: Application to the 2015 Tyndall Glacier landslide, Alaska”. Geophys. Res. Lett., 44(14), 7276–7284.
    Gotoh, H., Ikari, H., Memita, T. & Sakai, T. (2005). “Lagrangian particle method for simulation of wave overtopping on a vertical seawall”. Coast. Eng. J., 47(2&3), 57–181.
    Gotoh, H. & Sakai, T. (2006). “Key issues in the particle method for computation of wave breaking”. Coast. Eng., 53 (2&3), 171-179.
    Hall, J. V. & Watts, J. W. (1953). “Laboratory investigation of the vertical rise of solitary waves on impermeable slopes”. Technical Memorandum 33, Beach Erosion Board, US Army Corps of Engineers.
    Haeussler, P. J., Gulick, S. P. S., McCall, N., Walton, M., Reece, R., Larsen, C., Shugar, D. H., Geertsema, M., Venditte, J. G. & Labay, K. (2018). “Submarine deposition of a subaerial Landslide in Taan Fiord, Alaska". J. Geophys. Res. Earth Surf., 123(10), 2443–2463.
    Heinrich, P. (1992). “Nonlinear water waves generated by submarine and aerial landslides.” J. Waterw., Port, Coast. Ocean Eng., 118(3), 249–266.
    Higman, B., Shugar, D. H., Stark, C. P., Ekström, G., Koppes, M. N., Lynett, P., Dufresne, A., Haeussler, P. J., Geertsema, M., Gulick, S., Mattox, A., Venditti, J. G., Walton, M. A. L., McCall, N., Mckittrick, E., MacInnes, B., Bilderback, E. L., Tang, H., Willis, M. J. & Loso, M. (2018). “The 2015 landslide and tsunami in Taan Fiord, Alaska”. Sci. Rep., 8(1), 1–12.
    ITTC (2011). “Fresh Water Seawater Properties”. Int. Towing Tank Conference, 1-45, http://ittc.info/downloads/Archive%20of%20recommended%20procedures/2011%20Recommended%20Procedures/7.5-02-01-03.pdf.
    Huber, A. & Hager, W. H. (1997). “Forecasting impulse waves in reservoirs.” Dix-neuvième Congrès des Grands Barrages C, 31, 993– 1005. Florence, Italy, Commission Internationale des Grands Barrages, Paris.
    Jing, L. (2003). “A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering”. Int. J. Rock Mech. Min. Sci., 40, 283-353.
    Jing, L. & Stephansson, O. (2007). “Fundamentals of discrete element method for rock engineering: theory and applications”. Elsevier.
    Jiao, Y. Y., Zhang, H. Q., Tang, H. M., Zhang, X. L., Adoko, A. C. & Tian, H. N. (2014). “Simulating the process of reservoir-impoundment-induced landslide using the extended DDA method”. Eng. Geol., 182, 37–48.
    Kamphuis, J. W. & Bowering, R. J. (1970). Impulse waves generated by landslide, Proc. of 12th Coast. Engi. Conference, 575–588.
    Keller, J. B. (1948). “The solitary wave and periodic waves in shallow water.” Commun. Pure Appl. Math., 1, 323–339.
    Koshizuka, S. & Oka, Y. (1996). “Moving particle semi-implicit method for fragmentation of incompressible fluid”. Nucl. Sci. Eng., 123, 421-434.
    Koshizuka, S. & Oka, Y. (2001). "Application of Moving Particle Semi-implicit Method to Nuclear Reactor Safety". Comput. Fluid Dynamics J., 9, 366-375.
    Kondo, M. & Koshizuka, S. (2011). “Improvement of stability in moving particle semi-implicit method”. Int. J. Numer. Meth. Fluids, 65.
    Lake, L. (2007). “Petroleum engineering handbook”. Richardson, TX: Society of Petroleum Eng.
    Li, Y. & Raichlen, F. (2001). Solitary wave runup on plane slope, J. Waterway, Port, Coast. Ocean Eng., 127(1), 33–44.
    Li, G., Gao, J., Wen, P., Zhao, Q., Wang, J., Yan, J. & Yamaji, A. (2020). “A review on MPS method developments and applications in nuclear engineering”. Comput. Methods Appl. Mech. Eng., 367, 113166.
    Li, P. X. (2020). “Research on risk assessment of disasters caused by collapse of reservoir slope”. Master Thesis, National Cheng Kung University.
    Lo, H. Y., Park Y. S. & Liu P. L. F. (2013). “On the run-up and back-wash processes of single and double solitary waves — An experimental study”. Coast. Eng., 80, 1-14
    Løvholt, F., Griffin, J. & Salgado-Gálvez, M. (2022). “Tsunami hazard and risk assessment on the global scale”. Complex. Tsunamis Volcanoes Hazards, 213-246.
    Lu, C. Y., Tang, C. L., Chan, Y. C., Hu, J. C. & Chi C. C. (2014). “Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan”. Eng. Geol., 183, 14-30.
    Lynett, P., Weiss, R., Mattox, A., Skanavis, V., Higman, B., Keen, A., Tang, H., Stark, C. & Ayca, A. (2017). “The tsunami generated by the October 17th , 2015 Taan Fjord landslide”. Uni. Delaware, Dep. Civ. Envr. Eng., 15-19, https://www1.udel.edu/kirbt/landslide/rep.
    Mallet, R. & Mallet, J. W. (1858). “Fourth report upon the facts and theory of earthquake phenomena”. Trans. British Asso. Adv. Sci., 1852-1858.
    Ma, G., Matsuyama, H., Nishiyama, S. & Ohnishi Y. (2011). “Practical studies on rockfall simulation by DDA”. J. Rock Mech. Geotech. Eng., 3(1), 57–63.
    Meigs, A. & Sauber, J. (2000). “Southern Alaska as an example of the long-term consequences of mountain building under the influence of glaciers”. Quat. Sci. Rev., 19(14–15), 1543–1562.
    Miller, D. J. (1960). “Giant waves in Lituya bay, Alaska”. Geological Survey Professional Paper, US Government Printing Office, Washington DC, 354-C.
    Mikola, P. & Sitar, N. (2013). “Next generation discontinuous rock mass models: 3-D and rock-fluid interaction”. Frontiers of Discontin. Numer. Methods Pract. Simul. Eng. Disaster Prev., 12, 81-90.
    Miki, S., Ohnishi, Y. & Sasaki, T. (2017). “Water flow and rock mass coupling analysis of debris flow on a rock slope by DDA and MPS (Moving Particle Simulation) method”. ARMA, Am. Rock Mech. Asso., 17-630.
    Mohammad, A. N. & Farhadi, L. (2019). “MR-WC-MPS: A multi-resolution WC-MPS method for simulation of free-surface flows”. Watr., 11(7), 1349.
    Miki, S., Ohnishi, Y. & Sasaki, T. (2019). "Solid and water interaction analysis by NMM-DDA and MPS methods applied to large-scale landslide triggered by earthquake". Aydan et al. (Ed.), Rock Dynamics Summit, ISBN 978-0-367-34783-3.
    Müller, D. (1995). “Auflaufen und Überschwappen von Impulswellen an Talsperren”. Vischer (Ed.), Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Switzerland, VAW-Mitteilung, 137, D.
    Nature (1888). “Compressibility of water, salt water, mercury, and glass”. 38, 581–582.
    Nabian, M. A. & Farhadi, L. (2019). “MR-WC-MPS: A Multi-Resolution WC-MPS Method for Simulation of Free-Surface Flows”. Watr., 11(7), 349.
    Noda, E. (1970). “Water waves generated by landslides.” J. Waterw., Port. Coastal Ocean Div., Am. Soc. Civ. Eng., 96(4), 835–855.
    Petley, D. N. & Petley D. J. (2006). “On initiation of large rockslides: perspectives from a new analysis of the Vaiont movement record”. Evans, S.G., Scasrascia Mugnozza, G., Strom, A., and Hermanns, R.L. (eds) Massive Rock Slope Failure. Kluwer, Rotterdam, NATO Sci. Series, Earth Envr. Sci., 49, 77-84.
    Peng, X., Yu, P., Zhang, Y. & Chen G. (2018). “Applying modified discontinuous deformation analysis to assess the dynamic response of sites containing discontinuities”. Eng. Geol., 246, 349-360.
    Peng, X., Yu, P., Chen, G., Xia, M. & Zhang, Y. (2019). “Development of a coupled DDA–SPH method and its application to dynamic simulation of landslides involving solid–fluid interaction”. Rock Mech. Rock Eng., 1-19.
    Peng, W., Song, S., Yu, C., Bao, Y., Sui, J. & Hu, Y. (2019). “Forecasting landslides via three-dimensional discrete element modeling: Helong landslide case study”. Appl. Sci., 9(23), 5242.
    Quecedo, M., Pastor, M. & Herreros, M. I. (2004). “Numerical modelling of impulse wave generated by fast landslides”. Int. J. Numer. Meth. Eng., 59(12), 1633–1656.
    Qiu, L. C. (2014), “CFD simulation of surge wave generated by flow-like landslides”. Int. J. Civ. Envr. Eng., 8(9), 1021-1024.
    Ren, B., Jin, Z., Gao, R., Wang, Y. X. & Xu, Z. L. (2014). “SPH-DEM modeling of the hydraulic stability of 2D blocks on a slope”. J. Waterw. Port. Coast., 140.
    Robinson, M., Ramaioli, M. & Luding, S. (2014). “Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation”. Int. J. Multiph. Flow, 59, 121-134.
    Rzadkiewicz, S. A., Mariotti, C. & Heinrich, P. (1997). “Numerical simulation of submarine landslide and their hydraulic effects”. J. Waterway, Port. Coast. Ocean Eng., 149–157.
    Shi, G. H. (1988). “Discontinuous Deformation Analysis: A new numerical model for the statics and dynamics of block systems”. Ph.D. thesis. University of California, Berkeley.
    Shi, G.H. (1993). “Block system modeling by discontinuous deformation analysis”. Topics Eng. Comput. Mech. Publications, Southampton.
    Shi, C., An, Y., Wu, Q., Liu, Q. & Cao Z. (2016). “Numerical simulation of landslide-generated waves using a soil-water coupling smoothed particle hydrodynamics model”. Adv. Watr. Resour., 92, 130-141.
    Sixth District Management Office of Taiwan Water Corporation (2010). “Security data of Nanhua reservoir: Dam, dam foundation, and the slopes in the reservoir area, Tainan, Taiwan”. (In Mandarin).
    Synolakis, C. E. (1987). “The run-up of solitary waves”. J. Fluid Mech., 185, 523-545.
    Synolakis, C. E., Bardett, J. P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A. & Sweet,S. Tappin, D. R. (2002). “The slump origin of the 1998 papua new guinea tsunami”. Proc. R. Soc. Lond. A, 458, 763–789.
    Taiwan Topographic Map (1985). 1/25000 scale, First Edition. http://gissrv4.sinica.edu.tw.
    Tappin, D.T., Watts, P. & Grilli, S. T. (2008). “The Papua New Guinea tsunami of 1998: anatomy of a catastrophic event”. Natural Hazards Earth Syst. Sc., 8, 243-266.
    Tan, H. & Chen, S. (2017). “A hybrid DEM-SPH model for deformable landslide and its generated surge waves”. Adv. Watr. Res., 108, 256.
    Tan, H., Xu, Q. & Chen, S. H. (2018). “Subaerial rigid landslide-tsunamis: insights from a block DEM-SPH model”. Eng. Anal. Bound. Elem., 95, 297-314.
    Tajnesaie, M., Shakibaeinia, A. & Hosseini, K. (2018). “Meshfree particle numerical modelling of sub-aerial and submerged landslides”. Comput. Fluid, 172, 109.
    Tokura, S. (2014). “Comparison of particle methods: SPH and MPS”. 13th LS-DYNA Int. Conference, Detroit, USA.
    Trujillo-Vela, M., Galindo-Torres, S., Zhang, X., Ramos-Cañón, A. & Escobar-Vargas, J. (2021). “SPH-DEM Coupling for Debris Flows”. WCCM-ECCOMAS2020, doi:10.23967/wccm-eccomas.2020.316.
    Tsesarsky, M. & Hatzor, Y. H. (2006). “Tunnel roof deflection in blocky rock masses as a function of joint spacing and friction - A parametric study using discontinuous deformation analysis (DDA)”. Tunn. Undergr. Space Technol., 21(1), 29-45.
    Tsubota, K., Wada, S., Kamada, H., Kitagawa, Y., Lima, R. & Yamaguchi, T. (2006). “A particle method for blood flow simulation: application to flowing red blood cells and platelets”. J. Earth Simul., 5, 2-7.
    Vacondio, R., Mignosa, P. & Pagani, S. (2013). “3D SPH numerical simulation of the wave generated by the vajont rockslide”. Adv. Watr. Res., 59, 146-156.
    Von Hardenberg, W.G. (2011). “Expecting disaster: the 1963 landslide of the Vajont Dam”. Envr. Soc. Port. Arcadia, 8.
    Walder, J. S., Watts, P., Sorensen, O. E. & Janssen, K. (2003). “Water waves generated by subaerial mass flows.” J. Geophys. Res., 108(5), 2236–2254.
    Wang, W., Chen, G.Q., Zhang, H., Zhou, S.H., Liu, S.G., Wu, Y.Q. & Fan, F.S. (2016). “Analysis of landslide-generated impulsive waves using a coupled DDA-SPH method”. Eng. Anal. Bound. Elem., 64, 267-277.
    Wei, W., Zhao, Q., Qinghui, J. & Giovanni, G. (2020). “A new contact formulation for large frictional sliding and its implement in the explicit numerical manifold method”. Rock Mech. Rock Eng., 53(1), 435-451.
    Wu, J. H., Ohnishi, Y. & Nishiyama. S. (2004). “Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using discontinuous deformation analysis (DDA)”. Int. J. Rock Mech. Min. Sci., 41(5), 731-743.
    Wu, J. H., Ohnishi, Y. & Nishiyama. S. (2005). “A development of the discontinuous deformation analysis for rock fall analysis”. Int. J. Numer. Anal. Methods Geo. Mech., 29(10), 971-988.
    Wu, J. H. (2010). “Seismic landslide simulations in discontinuous deformation analysis”. Comput. Geotech., 37 (5), 594–601.
    Wu, J. H. & Chen, C. H. (2011). “Application of DDA to simulate characteristics of the Tsaoling landslide”. Comput. Geotech., 38 (5), 741–750.
    Wu, J. H., Lin, W. K. & Hu, H. T. (2017). “Assessing the impacts of a large slope failure using 3DEC: The Chiu-fen-erh-shan residual slope”. Comput. Geotech., 88, 32-45.
    Wu, J. H., Lin, W. K. & Hu, H. T. (2017). “Post-failure simulations of a large slope failure using 3DEC: The Hsien-du-shan slope”. Eng. Geol., 242, 92-107.
    Yu, P., Chen, G., Peng, X., Zhang, Y., Zhang, H. & Wang, W. (2021). “Verification and application of 2-D DDA-SPH method in solving fluid-structure interaction problems”. J. Fluids Struct., 102, 103252.
    Zhou GG, Cui P, Chen H, Zhu X, Tang J, Sun Q (2013a) Experimen-
    tal study on cascading landslide dam failures by upstream flows.
    Landslides 10(5):633–643
    Zhang, S., Morita, K., Fukuda, K. & Shirakawa, N. (2006). “An improved MPS method for numerical simulations of convective heat transfer problems”. Int. J. Numer. Methods Fluids, 51, 31–47.
    Zhou, G. G., Cui, P., Chen, H., Zhu, X., Tang, J. & Sun, Q. (2013). “Experimental study on cascading landslide dam failures by upstream flows”. Landslides, 10(5), 633–643.
    Zhang, Y., Fu, X. & Sheng, Q. (2014). “Modification of the discontinuous deformation analysis method and its application to seismic response analysis of large underground caverns”. Tunn. Undergr. Sp. Tech., 40, 241–250.
    Zhao, T., Utili, S. & Crosta, G. B. (2016). “Rockslide and impulse wave modelling in the vajont reservoir by DEM-CFD analyses”. Rock Mech. Rock Eng., 49(6), 2437-2456.
    Zhang, G., Wu, J., Sun, Z., El Moctar, O. & Zong, Z. (2020). “Numerically simulated flooding of a freely-floating two-dimensional damaged ship section using an improved MPS method”. Appl. Ocean Res., 101, 102207.
    Zhang, Q. H. & Shi G. H. (2021). “Verification of a DDA-based hydro-mechanical model and its application to dam foundation stability analysis”. Int. J. Rock Mech. Min. Sci., 138, 104627.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE