| 研究生: |
李怡婷 Li, Yi-Ting |
|---|---|
| 論文名稱: |
以海岸水動力及海岸漂沙劃設海岸緩衝區 Demarcating coastal buffer zone by coastal nearshore hydrodynamic and sediment transport |
| 指導教授: |
許泰文
Hsu, Tai-Wen |
| 共同指導教授: |
李兆芳
Lee, Jaw-Fang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 海洋科技與事務研究所 Institute of Ocean Technology and Marine Affairs |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 海岸緩衝區 、近岸水動力 、海岸漂沙運移 、SBEACH模式 、波浪溯升 、FLOW-3D |
| 外文關鍵詞: | coastal buffer zone, nearshore hydrodynamics, coastal sediment, SBEACH model, wave run-up, FLOW-3D |
| 相關次數: | 點閱:126 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣近年來不當的海岸開發利用等人為因素和自然因素影響海岸地區地形和生態上的動態平衡,甚至於造成災害和衍生不可逆的改變,海岸災害包括海岸侵蝕、造成海水污染、海岸環境降級和生態棲息地消失等。海岸緩衝區(coastal buffer zone)能透過降低侵蝕、減輕海岸災害、改善水質、擴展棲息地和降低海岸降級對不當的海岸使用和極端事件已有非常大的影響。本文從海岸水動力學觀點界定海岸緩衝區定海岸水動力和漂沙運移之影響範圍,讓波潮流有比較足夠的空間消能或搬運砂石,尊重大自然並設法使漂沙收支平衡而創造優良的海岸環境,建議海岸適當開發利用或過度海岸防護而向外延伸。海岸緩衝區對於海岸災害亦具有緩和、減輕與預防之功能,成為防災與保護之緩衝地帶。
本文以近岸水動力和海岸漂沙之數值模擬和學理分析依據提出海岸緩衝區的建立。文中首先參考河川緩衝區的劃設準則,並嘗試以河川緩衝區之劃設方法應用到有關海岸地區的緩衝之界定。本文以嘉義好美寮海岸為研究示範,由學理分析和數值計算結果劃設海岸緩衝區範圍。根據50年重現期的颱風波浪條件並考量平均最高潮位等因素影響下,推算由FLOW-3D及經驗公式推估波浪溯升範圍,並利用SBEACH模式模擬海灘剖面變化情形及漂沙移動臨界水深,進而訂定出海岸緩衝區的海域界線。本文以好美寮海岸為例,利用數值模擬和學理分析劃設緩衝區。
A coastal buffer zone can have a tremendously positive impact on the unwise coastal utilizations and extreme events by reducing erosion, mitigating coastal disasters, improving water quality, expanding habitats, and reducing coastal degradation. We first review the literature on the riparian zone of buffers, and then acquire them to the demarcation of coastal zone. An appropriate range of coastal buffer zone is investigated using SBEACH model and FLOW-3D numerical model. The seaward boundary is estimated based on the SBEACH model with 50-year return period typhoon wave conditions. In the same way, the landward boundary of coastal buffer zone is predicted by FLOW-3D numerical model as well as wave run-up empirical formulas. Numerical results show that the cross-shore distribution of the maximum wave run-up height and the closure depth, estimated from SBEACH can successfully the range of coastal buffer zone. The FLOW-3D numerical model based on the Navier-Stokes equations was adopted for the simulation of wave propagating over the topography. Wave run-up height was calculated both by FLOW-3D and empirical formulas. Both results are compared and used to define the range of coastal buffer zone. Although many complex factors are involved in nearshore hydrodynamics and coastal processes, the combination of a proper buffer zone from SBEACH model, FLOW-3D and wave run-up empirical formulas for simulating beach profile changes and run-up heights for planning a coastal buffer zone has the potential to become a proper planning tool for coastal buffer zone. A typical example for the delimiting the coastal buffer zone is given in the Haomeiliao Coast. It has been shown that the present method is applicable to bound coastal buffer zone in practical applications.
1. Ahrens, J.P. (1981). Irregular wave runup on smooth slopes. CETA No. 81-17, U.S. Army Corps of Engineers, Coastal Engineering Research Center, Ft. Belvoir, VA.
2. Ahrens, J.P., W.N. Seelig, D.L. Ward and W. Allsop (1993). Wave runup on and wave reflection from coastal structures. Proceedings of Ocean Wave Measurement and Analysis (Waves’93) Conference. American Society of Civil Engineers, pp. 489-502.
3. Battjes, J.A. (1974a). Surf similarity. Proceedings of the 14th International Coastal Engineering, Vol. 1, American Society of Civil Engineers, pp. 466-480.
4. Battjes, J.A. (1974b). Computation of set-up, longshore currents, run-up and overtopping due to wind-generated waves, Report 74-2, Committee on Hydraulics, Department of Civil Engineering, Delft University of Technology, Delft, The Netherlands..
5. Besley, P. (1999). Overtopping of seawalls-design and assessment manual. R & D Technical Report W 178, Environment Agency, Bristol, ISBN 1 85705 069 X.
6. Bunn, S.E. (1993). Riparian-stream linkages: research needs for the protection of in-stream values. Australian Biologist, Vol. 6, pp. 46-51.
7. Burcharth, H.F. and S.A. Hughes (2002). Fundamentals of design. In:S. Hughes (Ed.), Coastal Engineering Manual, Part VI, Design of Coastal Project Elements, Chapter VI-5, Engineer Manual 1110-2-1100. U.S. Army Corps of Engineers, Washington, DC.
8. CIRIA/CUR (1991). Manual on the use of rock in coastal and shoreline engineering, Special Publication 83, Construction Industry Research and Information Association, London.
9. Collier, K.J., A.B. Cooper, R. J. Davies-Colley, J.C. Rutherford, C.M. Smith and R.B. Williamson (1995a). Managing riparian zones. A contribution to protecting New Zealand’s rivers and streams, 1: Concepts. Department of Conservation, Wellington, New Zealand.
10. Chue, S.H. (1980). Wave Runup Formula of Universal Applicability, Proceedings of the Institution of Civil Eng., Part2, Vol.26, Dec, pp. 1035-1041.
11. CLASH. Crest Level Assessment of coastal Structures by full scale monitoring, neural network prediction and Hazard analysis on permissible wave overtopping. Fifth Framework Programme of the EU, Contract n. EVK3-CT-2001-00058. www.clasheu.org.
12. Dean, R.G. and R.A. Dalrymple (2002). Coastal processes with engineering applications. Cambridge University Press, 464 pp.
13. De Waal, J.P. and J.W. Van Der Meer (1992). Wave runup and overtopping on coastal structures. Proceedings of the 23rd International Coastal Engineering Conference, Vol. 2, American Society of Civil Engineers, pp.1758-1771.
14. Desbonnet, A., V. Lee, P. Pogue, D. Reis, J. Boyd, J. Willis and M. Imperial (1995). Development of coastal vegetated buffer programs. Coastal Management, Vol. 23, pp. 91-109.
15. Douglass, S.L. (1992). Estimating extreme values of run-up on beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 118, No. 2, American Society of Civil Engineers, pp. 220-224.
16. EAK (2002). Empfehlungen des Arbeitsausschusses Küstenschutzwerke. Die Küste. H. 65.
17. EurOtop Overtopping Manual (2007). Wave overtopping of sea defences and related structures: assessment Manual. www.overtoppingmanual.com
18. Flow Science, Inc. (2009). Flow 3D User Manual.
19. Government of Sri Lanka and Development Partners (2005). Post tsunami recovery and reconstruction. (Accessed 3 February 2006) http://www.reliefweb.int/ library/documents/2005/govsri-sri-27dec.pdf.
20. Gomez-Gesteira, M.R. Beiras, P. Presa and F. Vilas (2011). Coastal processes in northwestern Iberia, Spain. Continental Shelf Research, Vol. 31, pp. 367-375.
21. Granthem, K.N. (1953). A model study of wave run-up on sloping structures, Technical Report, Series 3, Issue 348, Institute of Engineering Research, University of California, Berkeley, California.
22. Grűne, J. (1982). Wave run-up caused by natural storm surge waves, Proceedings of the 18th International Coastal Engineering Conference, Vol. 1, American Society of Civil Engineers, pp. 785-803.
23. Hashimoto, H. (1973). An experimental study on irregular wave run-up on a coastal dike, Coastal Engineering in Japan, Vol. 16, pp. 123-136.
24. Haycock, N.E., T.P. Burt, K.W.T. Goulding and G. Pinay (eds.) (1997). Buffer zones: their processes and potential in water protection. Proceedings of the international conference on buffer zones. Quest Environmental, Hartfordshire, UK.
25. Harlow, F.H. and J.E. Welch (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, Vol. 8, pp. 2182-2189.
26. Hirt, C.W. and J. Sicilian (1985). A porosity technique for the definition of obstacles in rectangular cell meshes. Proceedings of the 4th Conference Ship Hydrolic, National Academy of Science, Washington, DC, USA.
27. Hirt, C.W. and B. D. Nichols (1981). Volume of fluid (VOF) method for dynamics of free boundaries. Journal of Computational Physics, Vol. 39, pp. 201-225.
28. Holman, R.A. (1986). Extreme value statistics for wave run-up on a natural beach. Coastal Engineering, Vol. 9, No. 6, pp. 649-661.
29. Hughes, S.A. (2004). Wave momentum flux parameter: A Descriptor for nearshore waves, Coastal Engineering, in press.
30. Hunt, I. A. (1959). Design of seawalls and breakwaters, Journal of the Waterways and Harbors Division, vol. 85, no. WW3. American Society of Civil Engineers, pp. 123-152.
31. Hsu, T.-W., T.Y. Lin and I.F. Tseng (2007). Human impact on coastal erosion in Taiwan. Journal of Coastal Research, Vol. 23, pp. 961-973.
32. Iribarren, C.R and C. Nogales. (1949). Protection des Ports. XVIIth International Navigation Congress, Section II, Communication, pp. 31-80.
33. Jorgensen, D.P., T.R. Shepherd and A.S. Goldstein (2000). A dual-pulse repetition frequency scheme for mitigating velocity ambiguities of the NOAA P-3 Airborne Doppler Radar. Journal of Atmospheric and Oceanic Technology, Vol. 17, pp. 585-594.
34. Kemp, M.J. and W.K. Dodds (2001). Spatial and temporal patterns of nitrate concentrations in pristine and agriculturally-influenced prairie streams. Biogeochemistry, Vol. 53, pp. 125-141.
35. Küstenschutz Mecklenburg-Vorpommern (2009). Ministry of agriculture, environment and consumer, Mecklenburg-Vorpommern, Germany.
36. Larson, M. (1988). Quantification of beach profile change, D. Sc. Thesis, Departemnt of water resources engineering, University of Lund, Sweden.
37. Larson, M. and N.C. Kraus (1989). SBEACH: Numerical model for simulating storm-induced beach change, Report 1: Empirical foundation and model development, Technical Report CERC-89-9, US Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS.
38. Larson, M., N.C. Kraus and M.R. Byrnes (1990). SBEACH: Numerical model for simulating storm-induced beach change, Report 2: Numerical formulation and model tests, Technical Report CERC-89-9, US Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS.
39. Lovell, S.T. and W.C. Sullivan (2006). Environmental benefits of conservation buffers in the United States: evidence, promise, and open questions. Agriculture, Ecosystems and Environment, Vol. 112, pp. 249-260.
40. Lowrance, R.R. (1998). Riparian forest ecosystems as filters for nonpoint-source pollution. Pp. 113-141 in: M. L. Pace and P. M. Groffman (eds.), Successes, Limitations and Frontiers in Ecosystem Science. Springer Verlag.
41. Malanson, G.P. (1993). Riparian landscapes. Cambridge, UK: Cambridge University Press.
42. Mase, H. (1989). Random wave run-up height on gentle slope. Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 115, No. 5, American Society of Civil Engineers, pp. 649-661.
43. Mase, H. and Y. Iwagaki (1984). Run-up of random wave on gentle slopes, Proceedings of the 19th Conference on Coastal Engineering, ASCE, pp. 593-609.
44. Mase, H. A. Miyahira and T.S. Hedges (2004). Random wave runup on seawalls near shorelines with and without artifical reefs, Coastal Engineering Journal, Vol. 46, No. 3, pp. 247-268.
45. Muscutt, A.D., G.L. Harris, S.W. Bailey, and D.B. Davies (1993). Buffer zones to improve water quality: a review of their potential use in UK agriculture. Agriculture, Ecosystems and Environment, Vol. 45, pp. 59-77.
46. Nakamura, H. and A. Nakagawa (1972). Stress calculation of earth-retaining structures during construction, Soils and Foundations, Vol. 12, No. 4, pp. 95-103.
47. National Research Council (NRC) (1990). Managing coastal erosion. Water science and technology board and marine board, National Academy Press, Washington, DC, 182 pp.
48. Osborne, L.L. and D.A. Kovacic (1993). Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology, Vol. 29, pp. 243-258.
49. Patankar, S.V. (1980). Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C.
50. Rhode Island Coastal Resources Management Program (RICRMP) (1990). The state of Rhode Island coastal resources management program, as amended Wakefield, RI: Oliver Stedman Government Center.
51. Rosati, J.D., R.A. Wise, N.C. Kraus and M. Larson (1993). SBEACH: Numerical model for simulating storm-induced beach change, Report 3, User’s Manual. Coastal Engineering Research Center, US. Army Crops of Engineers.
52. Rouck, J.D., R. Verdonck and P. Troch (1998). Wave run-up and overtopping : prototype versus scale models, Coastal Engineering, pp. 1039-1052.
53. Sainflou, M. (1928). Treatise on vertical breakwaters, Annals des Ponts et Chaussees, Paris, France
54. Samarasinghe, J. (2005). Executive Director, Task Force for Rebuilding the Nation, personal communication.
55. Sano, M., M. Marchand and R. Medina (2010). Coastal setbacks for the Mediterranean: a challenge for ICZM. Journal of Coastal Conservation, Vol. 14, pp. 33-39.
56. Savage, R.P. (1958). Wave run-up on roughened and permeable slopes, Journal of the Waterways and Harbors Division, Vol. 84, No. WW3. American Society of Civil Engineers, pp.1640-1~1640-38.
57. Saville Jr., T. (1955). Laboratory data on wave run-up and overtopping on shore structure, Technical Memorandum, No. 64, Beach Erosion Board, U.S. Army Corps of Engineers, Washington, DC.
58. Saville Jr., T. (1956). Wave run-up on shore structures, Journal of the Waterways and Harbors Division, Vol. 82, No. WW2. American Society of Civil Engineers, pp. 925-1~925-14.
59. Saville Jr., T. (1958). Wave run-up on composite slopes. Proceedings of the 6th International Coastal Engineering Conference. American Society of Civil Engineers, pp. 691-699.
60. Shore Protection Manual (1977). U.S. Army Engineer Waterways Experiment Station, 3rd ed. U.S. Government Printing Office, Washington, DC.
61. Shore Protection Manual (1984). U.S. Army Engineer Waterways Experiment Station, 4th ed. U.S. Government Printing Office, Washington, DC.
62. Schultz, R.C., A. Kuehl, Colletti J.P., Wray P., Isenhart T. and L. Miller L. (1997). Riparian buffer systems. Iowa State University Publication Pm-1626a, Ames, IA.
63. Shultz, S.D. and J.A. Leitch (2003). The feasibility of restoring previously drained wetland to reduce flood damage. J. Soil Water Conserv. Vol., 58, No. 1, pp. 21-29. Skinner, Schueler, T. (1995a). The architecture of urban stream buffers. Watershed Protection Techniques 1 (4).
64. Shultz, S.D. and J.A. Leitch (2003). The feasibility of restoring previously drained wetland to reduce flood damage. Journal of Soil Water Conservation. Vol., 58, No. 1, pp. 21-29.
65. Sparboom, U., Grűne, J., Groshe, S. and Haidekker, M. (1990). Full-scale measurements of wave run-up at sea dikes. Proceedings, 22th Confencces on Coastal Engineering, ASCE, pp. 895-908.
66. United States Environmental Protection Agency (USEPA) (1998). Clean Water Action Plan: Restoring and Protecting America’s Waters. Washington, DC: USEPA (EPA-840-R-98-001).
67. United Nation (1982). Ocean economics and technology branch. Coastal area management and development, pp. 10-12.
68. Van der Meer, J.W. (1998). Wave run-up and overtopping. Chapter 8 in: Seawalls, dikes and revetments. Edited by K.W. Pilarczyk. Balkema, Rotterdam.
69. Van Der Meer, J.W. and C.J.M. Stam (1992). Wave runup on smooth and rock slopes of coastal structures, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 118, No. 5, American Society of Civil Engineers, pp. 534-550.
70. Wang, Z. and Grűne, J. (1996). “Wave run-up on revetments with composite slopes.” Proceedings 25th Confencces on Coastal Engineering, ASCE, pp. 1008-1021.
71. Wassing, F. (1957). Model investigation on wave run-up carried out in the Netherlands during the past twenty years. Proceedings of the 6th International Coastal Engineering Conference. American Society of Civil Engineers, pp. 700- 714.
72. Wong, P.P. (2009). Rethinking post-tsunami integrated coastal management for Asia-Pacific. Ocean and Coastal Management, Vol. 52, pp. 405-410.
73. Yamamoto, Y. and K. Horikawa (1992). New methods to evaluate wave run-up height and wave overtopping rate. Proceedings 23rd Confencces on Coastal Engineering, ASCE, pp. 1734-1747.
74. TAW (2002). Technical Report-Wave run-up and wave overtopping at dikes. Technical Advisory Committee for Flood Defence in the Netherlands (TAW). Delft. 2002
75. 湯麟武 (1970),「淺灘海岸上波浪推算方法之研究」,國立成功大學土木水利學術彙刊第一期,第105-106頁。
76. 張隆盛 (1987),「海岸地帶發展與管理」,台灣地區海資源保育與管理研討會,第2-3頁。
77. 張石角 (1993),「台灣海岸之自然環境與國土資源評估」,工程環境會刊,13期,第4頁。
78. 黃異 (1994),「我國海域及海岸法律與行政體制之探討」,行政院國家科學委員會專題研究計畫成果報告,第10-11頁。
79. 葉榮樁、唐高永、鍾兆君、賀陳旦、邱文彥 (1995),「海岸地區整體規劃之研究」,內政部營建署委託研究計畫。
80. 邱文彥 (2000),「海岸管理理論與實務」,129頁。
81. 謝佳殷 (2001),「我國海岸管理法規體系與行政機制之研究」,碩士論文,國立海洋大學海洋法律研究所。
82. 簡仲和、黃建維、郭晉安、郭瑞成、蔡宗利、陳嘉君、曾鈺蘋 (2004),「嘉義鰲鼓至曾文溪口潮波流及輸砂調查研究(3/4)」,財團法人成大水利海洋研究發展文教基金會。
83. 許泰文、許榮中、李兆芳、簡仲和、曾以帆 (2004),「海岸開發後對地形變遷影響機制分析研究(鰲鼓至曾文溪口)(2/3)」,經濟部水利署水利規劃試驗所。
84. 周玉娟 (2008),「海岸緩衝區之研究-以好美寮為例」,國立成功大學海洋科技與事務研究所碩士論文。
85. 經濟部水利署第五河川局,(2008),「易淹水地區水患治理計畫-嘉義縣管事業海堤好美寮海堤規劃報告」。
86. 謝宛芝 (2009),「海岸緩衝區與自然保護區相關性之分析研究-以好美寮海岸為例」,國立成功大學海洋科技與事務研究所碩士論文。
87. 李芳君、林文華、許榮中 (2009),「颱風巨浪侵襲下海岸緩衝帶預估與海灘剖面變化的探討」,第31屆海洋工程研討會,第519-524頁。
88. 林文華、李芳君、許榮中 (2009),「颱風巨浪暴潮作用下海岸緩衝帶寬度研擬」,第31屆海洋工程研討會,第525-530頁。
89. 何積忠 (2010),「應用歐盟越波手冊公式模擬屏東番子崙複合式海堤颱風越波流量之評估研究」,國立台灣海洋大學河海工程學系碩士論文。
90. 吳柏辰 (2011),「台灣海岸緩衝區劃設之研究」,國立成功大學海洋科技與事務研究所碩士論文。